Натамицин и электромагнитные поля: влияние на качество капусты при хранении

Бабакина Мария Владимировна
«Краснодарский научно-исследовательский институт хранения и переработки сельскохозяйственной продукции» – филиал ФГБНУ «Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия»
Адрес: 350072, г. Краснодар, ул. Тополиная аллея, д. 2
E-mail: wuhdz@mail.ru

Михайлова Лариса Васильевна
«Краснодарский научно-исследовательский институт хранения и переработки сельскохозяйственной продукции» – филиал ФГБНУ «Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия»
Адрес: 350072, г. Краснодар, ул. Тополиная аллея, д. 2
E-mail: knihihp@mail.ru

Першакова Татьяна Викторовна
«Краснодарский научно-исследовательский институт хранения и переработки сельскохозяйственной продукции» – филиал ФГБНУ «Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия»
Адрес: 350072, г. Краснодар, ул. Тополиная аллея, д. 2
E-mail: 7999997@inbox.ru

Купин Григорий Анатольевич
«Краснодарский научно-исследовательский институт хранения и переработки сельскохозяйственной продукции» – филиал ФГБНУ «Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия»
Адрес: 350072, г. Краснодар, ул. Тополиная аллея, д. 2
E-mail: griga_77@mail.ru

Самойленко Мария Владимировна
«Краснодарский научно-исследовательский институт хранения и переработки сельскохозяйственной продукции» – филиал ФГБНУ «Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия»
Адрес: 350072, г. Краснодар, ул. Тополиная аллея, д. 2
E-mail: marimanro13@yandex.ru

Обеспечение населения свежими овощами в течение года возможно за счет решения комплекса научно-технических задач по обеспечению снижения потерь растительной продукции в процессе хранения. Несмотря на значительное количество исследований, посвященных стабилизации качества растительного сырья, в том числе, с применением физических и химических методов, в настоящее время отсутствуют исследования эффективности комплексных воздействия физических (электромагнитные поля крайне низких частот – ЭМП КНЧ) и биологических методов для снижения потерь капустных овощей. В связи с этим, целью исследования является изучение влияния обработки ЭМП КНЧ и препарата биологического происхождения натамицин на качество и величину потерь цветной и белокочанной капусты при краткосрочном хранении, выявление оптимальных доз, параметров обработки ЭМП КНЧ в зависимости от вида и сорта капусты и температуры хранения. Исследуемые образцы обрабатывали натамицином и ЭМП КНЧ (частота 25 Гц, время обработки 30 мин магнитная индукция 10 мТл) раздельно и комплексно, хранили при температурах +2±1 °С и +10±1 °С. Минимальные потери обеспечивались при обработке натамицином концентрацией – 0,09 г/л; величина общих потерь и выход стандартной продукции обработанных образцов зависит от вида и сорта капусты. Обработка ЭМП КНЧ и натамицином раздельно и в комплексе позволяет увеличить выход стандартной продукции и сократить потери при хранении при температурах +2±1 °С и +10±1 °С на величину от 3,1 %, до 8,4 %. Полученные результаты представляют интерес для разработки технологии повышения устойчивости капустных овощей перед транспортированием; для подготовки к краткосрочному хранению в условиях организаций и предприятий оптовой и розничной торговли, общественного питания.
Ключевые слова: капустные овощи, белокочанная капуста, цветная капуста, технология хранения, обработка, электромагнитные поля крайне низких частот, натамидии, потери, качество

Введение

Для производителей сельскохозяйственной продукции актуальным является не только получение высоких результатов в выращивании плодово-ягодной продукции, но и умение сохранить ее потребительское качество и товарный вид в течение определенных сроков хранения.

Капуста – один из самых популярных овощей в рационе человека, что объясняется ее доступностью и питательными особенностями. Крупнейшими производителями капусты являются Китай (33 млн тонн), Индия (8,5 млн тонн) и Россия (3,5 млн тонн). Значительные объёмы этого овоща сеяются в Китае, Японии, Италии, США, Бразилии и Польше. Примерно 88% потребления капусты происходит в свежем виде, и в то же время в странах, таких как Германия и Австрия, Канада, США и Россия более популярна приготовленная капуста (Kusznierewicz, Smiechowska, Bartoszek, & Namiesnik, 2008). Задолго до того, как капуста стала пищевым продуктом, ее традиционно использовали в лечебных целях, для детоксикации организма (Higdon, Delage, Williams, & Dashwood, 2007). Исследователями отмечается тот факт, что полезна для здоровья от капусты связаны с такими соединениями как глюкозинолаты, флавоноиды, индольы, аскорбиновая кислота, фенольные соединения, каротины и токоферол (Martinez, Mackert, & McIntosh, 2017).

Благодаря наличию антиоксидантных фитохимических веществ, например витаминов С и Е, флавоноидов и каротиноидов, происходит снижение общего риска развития ряда хронических заболеваний, таких как рак, болезни сердца, диабет, болезнь Альцгеймера. Без достаточного потребления крестоцветных овощей, таких как капуста, может быть нарушен кислородный обмен, что приведет к окислительному стрессу, который сам по себе является фактором риска возникновения рака и других ранее упомянутых хронических заболеваний. Потребление капусты в конечном итоге увеличивает уровень антиоксидантов в крови, клетках и тканях (Podsdek, 2007; Yahia, 2010). Капуста – это нераспредельной, богатый клетчаткой овощ, обеспечивающий в общей сложности 2,5 г пищевых волокон на 100 г порции, что включает как растворимые, так и нерастворимые части волокон. Это означает, что, хотя этот овощ низкокалорийный, он дает ощущение сытости.

Капустные овощи содержат высокое количество влаги, поэтому их хранение довольно проблематично за счет активного протекания биохимических процессов: быстро снижается качество, увеличиваются потери и требует соблюдения определенных параметров и технологий хранения. Наиболее значимыми при хранении капусты являются такие параметры как относительная влажность воздуха, температура, степень аэрации. Большое значение имеет сорт, степень зрелости сырья. Традиционные технологии хранения капусты достаточно затратны и энергоемки. К ним относятся такие способы как сохранение с помощью поддержания оптимальных физических параметров, химическая стабилизация, применения биотехнологий.

Физические параметры, обеспечивающие стабилизацию качества и продление сроков хранения – температура окружающей среды, влажность, давление и состав газовой среды. Обеспечение этих показателей за счет установки соответствующего оборудования, рентабельно только при длительном хранении, при краткосрочном хранении в условиях предприятий оптовой и розничной торговли, перерабатывающих предприятий актуален поиск других методов.

Для совершенствования традиционной технологии нами были рассмотрено применение препарата натамидии. Натамидии – это широко применяемое в пищевой промышленности противогрибковое вещество, которое производится методом ферментации с использованием Streptomyces natalensis (Davidson & Zivanovic, 2005). За счет высокого сродства к эр-
гостерину натамиин связывается с ним, при этом нарушается проницаемость мембраны клетки гриба, снижение количества незаменимых ниточков и низкомолекулярных пептидов, что приводит к лизису клеток. Кроме того, известны ряд зарубежных исследований об эффективности ионизирующего облучения (гамма-излучение, рентгеновские лучи, электронный пучок) ингибирования развития фитопатогенов на поверхности растительного сыра (Усев, 1989). В Корее и Китае запатентованы способы и устройства для стерилизации фруктов и овощей, способ инактивации возбудителей грибковых заболеваний при помощи ионизирующего излучения. Китайскими учеными также запатентован способ стерилизации фруктов и овощей, основанный на облучении сырья электронным пучком, позволяющий увеличить сроки хранения продукции.

Ранее нами было установлено стабилизирующее действие обработки электромагнитными полями крайне низких ЭМП КНЧ в процессе хранения яблок и корнеплодов (Pershakova et al., 2018). Обработка ЭМП КНЧ не оказывает влияния на цвет, вкус, обрабатываемого продукта, способствуя при этом инактивации микроорганизмов, за счет потери жизнеспособности клеток, происходящих из-за денатурации ферментов и мембранных белков, нарушения структуры ДНК (Lung et al., 2015).

Несмотря на значительное количество публикаций, посвященных стабилизации качества растительного сырья с применением физических и химических методов, требуется дальнейших исследований возможность совместного воздействия на растительные объекты для достижения большей эффективности, снижения экологической нагрузки при обработке перед хранением таких объектов, как капустные овощи.

В связи с этим, целью исследования является изучение влияния обработки натамицином и электромагнитными полями крайне низких частот на качество и величину потерь цветной и белокочанной капусты при краткосрочном хранении, выявление оптимальных доз, параметров обработки ЭМП КНЧ в зависимости от вида и сорта капусты и температуры хранения.

Материалы и методы исследования

Материалы

Для исследования использовался препарат натамицина фирмы Freda Biotechnology Co., Ltd.

Объекты

Объектами исследования являлись:

- капуста белокочанная сорта Ринда, Казачок, урожай 2020 года, выращенная в Краснодарском крае;
- капуста цветная сорта Гарант, урожай 2020 года, выращенная в Краснодарском крае.

Качество капусты соответствовало ГОСТ Р 51809-2001 и ГОСТ 33952-2016.

Методы

Для определения товарного качества капусты, ее вз вещивания, осматривали и рассортировывали на фракции: стандарт, не стандарт, абсолютный отход. Внешний вид, запах, наличие больших, поврежденных кочанов определяли органолептически. Каждую фракцию вз вещивали и вычисляли ее содержание в процентах по отношению к массе объединенной пробы.

Для подсчета естественной убыли массы (величины общих потерь) при хранении производили подсчет массы кочанов капусты до и после хранения с исследуемыми вариантами обработок и условий хранения.

Процедура исследования

Кочаны белокочанной и соцветия цветной капусты, не пораженные болезнями и не имеющие механических повреждений, обрабатывали натамицином (дозировка 0,03, 0,06, 0,09, 0,12 г/л), ЭМП КНЧ (частота 25 Гц, время обработки 30 мин магнитная индукция 10 мТл) и комплексно ЭМП КНЧ + водный раствор натамицина 0,09 г/л. Кон-
тролем служили не обработанные образцы. Хра-
нили кочаны при +2±1 °C в течение 28 сут, и в
другом варианте опыта – при +10±1 °C в течение
21 сут.

Обработку электромагнитными полями крайне
низких частот (ЭМП КНЧ) проводили с использо-
ванием лабораторной экспериментальной уста-
новки, состоящей из универсального генератора
сигналов RIGOL DG1022, усилителя MMF LV102, ос-
циллографа LeCroy WA202 и соленоида.

Исследуемый растительный материал помещался
в соленоид, после чего подвергался воздействию
электромагнитных колебаний с заданной часто-
ты и индукцией.

Обработка водным раствором натамицина.
Расход 0,5-1,0 мл/кг

В Таблице 1 представлены характеристики приме-
няемых способов хранения кочанов белокочанной
купы и соцветий цветной капусты. В процессе
хранения при указанных условиях развитие ми-
кробиологической порчи не выявлено. Единствен-
ным видом потеря была естественная убыль массы.

Таблица 1
Характеристика применяемых способов обработки и хранения белокочанной и цветной капусты

<table>
<thead>
<tr>
<th>Номер образца</th>
<th>Способ подготовки к хранению</th>
<th>Параметры обработки</th>
<th>Параметры хранения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Контроль (без обработки)</td>
<td>-</td>
<td>t= +2±1 °C, W= 70 %, 28 суток</td>
</tr>
<tr>
<td>2</td>
<td>Обработка ЭМП КНЧ</td>
<td>Частота 25 Гц, время обработки 30 минут, магнитная индукция 10 мТл</td>
<td>t= +10±1 °C, W=70%, 21 сутки</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Результаты

На первом этапе исследовано влияние различ-
ных концентраций (0,05, 0,06, 0,09, 0,012 г/л) на-
тамицина на устойчивость ранней белокочанной
и цветной капусты в процессе хранения в тече-
ние 28 суток при температуре +2±1 °C и относи-
тельной влажности 70%. Результаты исследования
представлены в Таблице 2.

На следующем этапе исследовали товарное каче-
ство кочанов белокочанной и соцветий цветной
купы (процент выхода стандартной и нестан-
дартной продукции, абсолютный отход) разных
сортов при хранении при температурах +2±1 °C и
+10±1 °C после комплексной обработки ЭМП КНЧ
и натамицином (см. Таблицу 3).

На следующем этапе исследования представляло
интерес изучить влияние способов обработки и
температуры хранения на величину общих потерь
белокочанной и цветной капусты.

На первом этапе исследований (см. Таблицу 2)
установлено, что обработка водным раствором
натамицина с концентрациями 0,05, 0,06, 0,09,
Таблица 2
Потери ранней белокочанной и цветной капусты при хранении в зависимости от концентрации ната-мицина

<table>
<thead>
<tr>
<th>Вид обработки</th>
<th>Естественная убыль, %</th>
<th>Естественная убыль, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(t = +2\pm1 , ^\circ C, \text{W}=70%), 28 суток</td>
<td>(t = +10\pm1 , ^\circ C, \text{W}=70%), 21 сутки</td>
</tr>
<tr>
<td>белокочанная капуста сорт «Ринда»</td>
<td></td>
<td></td>
</tr>
<tr>
<td>КОНТРОЛЬ</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Натамицина 0,05</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Натамицина 0,06</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Натамицина 0,09</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Натамицина 0,12</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>белокочанная капуста сорт «Казачок»</td>
<td></td>
<td></td>
</tr>
<tr>
<td>КОНТРОЛЬ</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Натамицина 0,03</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Натамицина 0,06</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Натамицина 0,09</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Натамицина 0,12</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>цветная капуста сорт «Гарантия»</td>
<td></td>
<td></td>
</tr>
<tr>
<td>КОНТРОЛЬ</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>Натамицина 0,03</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Натамицина 0,06</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Натамицина 0,09</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Натамицина 0,12</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

Таблица 3
Товарное качество кочанов белокочанной и сочветий цветной капусты

<table>
<thead>
<tr>
<th>Наименование образца</th>
<th>Товарное качество, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>стандарт</td>
</tr>
<tr>
<td></td>
<td>(+2 , ^\circ C)</td>
</tr>
<tr>
<td>Белокочанная капуста</td>
<td></td>
</tr>
<tr>
<td>Ринда</td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>86,2±5,5</td>
</tr>
<tr>
<td>комплексная обработка</td>
<td>90,5±5,9</td>
</tr>
<tr>
<td>Казачок</td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>85,5±5,3</td>
</tr>
<tr>
<td>комплексная обработка</td>
<td>90,3±5,7</td>
</tr>
<tr>
<td>Цветная капуста</td>
<td></td>
</tr>
<tr>
<td>Гарантия</td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>89,2±5,6</td>
</tr>
<tr>
<td>комплексная обработка</td>
<td>93,9±4,1</td>
</tr>
</tbody>
</table>
0,12 г/л кочанов ранней белокочанной и соцветий цветной капусты перед закладкой на хранение снижает общие потери после 28 суток хранения при t = +2±1 °C по сравнению с контролем (без обработки) для сорта Ринда на 2-10 %, для сорта Казачок на 5-13 %, а для сорта цветной капусты Гарантия на 11-18 %.

При хранении в течение 21 суток при t =+10±1 °C обработка натамицином снижает общие потери по сравнению с контролем (без обработки) для сорта Ринда на 2-8 %, для сорта Казачок на 2-8 %, а для сорта цветной капусты Гарантия на 5-12 %.

Наиболее эффективной концентрацией раствора натамицина оказалась концентрация 0,09 г/л. Увеличение дозировки препарата не способствовало снижению величины потерь. В связи с этим дальнейшие исследования проводили с этой дозировкой.

На втором этапе исследований (см. Таблицу 3) установлено, что при хранении белокочанной капусты, предварительно обработанной ЭМП КНЧ и натамицином, при температуре +2±1 °C выход стандартной продукции выше на 4,3 – 5,2 %, а при температуре хранения +10±1 °C – выше на 7,6 – 7,8 % относительно контрольных образцов.

Для цветной капусты комплексная обработка ЭМП КНЧ и натамицином позволила увеличить выход стандартной продукции при температуре хранения +2±1 °C на 4,7 – 5,2 %, а при температуре хранения +10±1 °C – на 7,4 – 8,1 % относительно контрольных образцов.

Так как сортовые особенности кочанов не оказали значимого влияния на товарное качество при предварительной комплексной обработке, то дальнейшие исследования проводились с одним сортом белокочанной капусты Ринда и одним сортом цветной капусты Гарантия.

В Таблице 4 приведены данные по общим потерям кочанов белокочанной капусты сорта Ринда и соцветий цветной капусты сорта Гарантия в результате естественной убыли в зависимости от способа предварительной обработки при разных температурах хранения через 21 и 28 суток.

На последнем этапе исследования (см. Таблицу 4) установлено, что при хранении кочанов белокочанной капусты при температуре +2±1 °C количество общих потерь по сравнению с контролем ниже: для кочанов, обработанных натамицином, – на 5 %, ЭМП КНЧ – на 4,7 %, ЭМП КНЧ и натамицином в комплексе – на 5,6 %.

При хранении кочанов белокочанной капусты при температуре +10±1 °C количество общих потерь по сравнению с контролем ниже: для кочанов, обработанных натамицином, – на 7,6 %, ЭМП КНЧ – на 7,3 %, ЭМП КНЧ и натамицином в комплексе – на 8,4 %.

Также установлено, что при хранении соцветий цветной капусты при температуре +2±1 °C количество общих потерь по сравнению с контролем ниже: для соцветий, обработанных натамицином, – на 5,4 %, ЭМП КНЧ – на 5,1 %, ЭМП КНЧ и натамицином в комплексе – на 4,2 %.

При хранении соцветий цвеотной капусты при температуре +10±1 °C количество общих потерь по сравнению с контролем ниже: для соцветий, обра-

Таблица 4

<table>
<thead>
<tr>
<th>Образец</th>
<th>Общие потери, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>белокочанная</td>
</tr>
<tr>
<td></td>
<td>капуста сорта</td>
</tr>
<tr>
<td>Контроль (t=-2±1 °C)</td>
<td>13,5±0,6</td>
</tr>
<tr>
<td>Контроль (t=-10±1 °C)</td>
<td>26,4±2,0</td>
</tr>
<tr>
<td>Натамицин (t=+2±1 °C)</td>
<td>8,5±0,4</td>
</tr>
<tr>
<td>Натамицин (t=+10±1 °C)</td>
<td>18,8±1,6</td>
</tr>
<tr>
<td>ЭМП КНЧ (t=+2±1 °C)</td>
<td>8,8±0,4</td>
</tr>
<tr>
<td>ЭМП КНЧ (t=+10±1 °C)</td>
<td>19,1±1,7</td>
</tr>
<tr>
<td>ЭМП КНЧ и натамицин (t=+2±1 °C)</td>
<td>7,9±0,3</td>
</tr>
<tr>
<td>ЭМП КНЧ и натамицин (t=+10±1 °C)</td>
<td>18,0±1,4</td>
</tr>
</tbody>
</table>
ботанных натамицином, — на 4,9 %, ЭМП КНЧ — на 4,6 %, ЭМП КНЧ и натамицином в комплексе — на 5,7 %.

При этом наблюдается отсутствие потерь от микробиологической порчи вне зависимости от температуры хранения, продолжительности хранения, выбора предварительной обработки и вида сырья.

Обсуждение полученных результатов

Полученные результаты согласуются с установленными ранее фактами влияния магнитных полей в диапазоне частот 3-50 Гц на различные молекулярные и клеточные модели (Кудряшов & Дмитриева, 2016; Першакова и др., 2019).

Результаты исследований подтверждают данные о влиянии электромагнитных излучений на биологические системы. При обработке ЭМП КНЧ воздействие на объект происходит на нескольких уровнях: на уровне молекулы, клетки, ткани, органа и организма. При этом для объяснения происходящих магнито-биологических эффектов используют теоретические положения теории квантовой интерференции и спиновой конверсии (Бинги, 2005; Больцаков, 2002; Гордеева, 2013). На молекулярном уровне на объект значительное влияние оказывают ионо-резонансные явления — воздействие электромагнитных полей на мембрану клетки, вызывающие в ней акустические колебания. При этом происходит преобразование потенциальной энергии электрического поля в кинетическую энергию акустических волн обеспечивающая движение ионов через мембрану (Архипов, 2004; Протопопов, 1999).

Исследователи Гапеев (Гапеев, 2006) и Перельмутер⁸ предложили, что механизм возникновения колебаний в мембране происходит за счет поляризации в электрическом поле и перемещения молекул лиpidов по направлению вектора действия поля. В связи с этим происходит изменение диэлектрической проницаемости мембран и изменение энергии электростатического поля. Энергия поля циклично преобразуется в кинетическую энергию смешения лиpidных молекул. На уровне организма реализуются индукционные механизмы на основе системы электропроводящих контуров в растительном объекте, в которых образуется электродвижущая сила за счет генерации электрического поля и за счет изменений во времени магнитного поля⁹. Полученные, в результате исследований данные о различной степени влияния обработки электромагнитными полями крайне низких частот на величину потерь в зависимости от вида капустных овощей, согласуется с результатами исследователей о том, что на величину электродвижущей силы влияет электропроводность и диэлектрическая проницаемость, которые зависят от частоты приложенного поля и от биохимического состава ткани растительного объекта, который в свою очередь зависит от вида и степени зрелости растительного объекта (Гончаров, Евдакова, & Яшкадин, 2020). Дополнительная обработка антимикробным оказывает ингибитирующее действие на развитие фитопатогенов.

Таким образом, можно сделать вывод о целесообразности продолжения исследований по разработке способов стабилизации качества капустных овощей в процессе хранения путем обработки электромагнитными полями крайне низких частот и антимикробными препаратами в зависимости от вида и сорта овощей и параметров хранения¹⁰.

Выводы

Установлена эффективность комплексной обработки ЭМП КНЧ и натамицином для стабилизации качества и снижения потерь от естественной убыли белокачанной и цветной капусты в процессе краткосрочного хранения при различных температурных параметрах. Установлены эффективные концентрации раствора натамицина и параметры обработки ЭМП КНЧ.

Полученные результаты представляют интерес для разработки технологий повышения устойчивости капустных овощей перед транспортированием; для подготовки к краткосрочному хранению в условиях организаций и предприятий оптовой и розничной торговли, общественного питания.

Дальнейшие направления исследований должны быть направлены на оценку влияния данных

способов обработки на биохимические, микробиологические показатели, оценку показателей безопасности и экономической эффективности.

Литература

Podesdek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: a

Natamycin and Electromagnetic Fields: Influence on the Quality of Cabbage during Storage

Maria V. Babakina
2, Topolinaya alleya str., Krasnodar, 350072, Russian Federation
E-mail: wuhd@yandex.ru

Larisa V. Mikhaylyuta
2, Topolinaya alleya str., Krasnodar, 350072, Russian Federation
E-mail: kniihp@mail.ru

Tatyana V. Pershakova
2, Topolinaya alleya str., Krasnodar, 350072, Russian Federation
E-mail: 7999997@inbox.ru

Grigoriy A. Kupin
2, Topolinaya alleya str., Krasnodar, 350072, Russian Federation
E-mail: griga_77@mail.ru

Maria V. Samoyleenko
2, Topolinaya alleya str., Krasnodar, 350072, Russian Federation
E-mail: marimanro13@yandex.ru

Providing the population with fresh vegetables throughout the year is possible due to the solution of a set of scientific and technical problems to ensure the reduction of losses of plant products during storage. Despite a significant number of studies devoted to stabilizing the quality of plant raw materials, including using physical and chemical methods, there are currently no studies of the effectiveness of the complex effects of physical (electromagnetic fields of extremely low frequencies – EMF ELF) and biological methods to reduce the loss of cabbage vegetables. In this regard, the aim of the study is to study the effect of ELF EMF treatment and natamycin, a preparation of biological origin, on the quality and amount of losses of cauliflower and white cabbage during short-term storage, to identify optimal doses, processing parameters of EMF ELF, depending on the type and variety of cabbage and storage temperature. The samples under study were treated with natamycin and EMF ELF (frequency 25 Hz, treatment time 30 min, magnetic induction 10 mT) separately and in a complex, stored at temperatures of +2±1 °C and +10±1 °C. The minimum losses were ensured when treated with natamycin with a concentration of 0.09 g/l; the amount of total losses and the yield of standard products of processed samples depends on the type and variety of cabbage. EMP treatment with ELF and natamycin...
separately and in combination allows increasing the output of standard products and reducing losses during storage at temperatures of $+2\pm 1$ °C and $+10\pm 1$ °C by a value from 3.1 % to 8.4 %. The results obtained are of interest for the development of technologies for increasing the stability of cabbage vegetables before transportation; for preparation for short-term storage in the conditions of organizations and enterprises of wholesale and retail trade, public catering.

Keywords: cabbage vegetables, white cabbage, cauliflower, storage technology, processing, extremely low frequency electromagnetic fields, natamycin, losses, commercial quality

References

Fratìanni, F., Nazzaro, F., Marandino, A., del Rosario Fusco, M., Coppola, R., de Feo, V., & de Martino, L. (2013). Biochemical composition, antimicrobial activities, and anti-quorum-sensing activi-

