Preview

Storage and Processing of Farm Products

Advanced search

Evaluation of the Potential of Propionic Acid Bacteria for Obtaining Postbiotics

https://doi.org/10.36107/spfp.2022.356

Abstract

Introduction. Numerous modern studies show that the products of potentially probiotic cultures, like probiotic microorganisms, can cause positive effects on the health of users. Their using is a preventive strategy for approaching human health.

Purpose. To characterize the potential of the P. shermani E2 strain for use for the production of postbiotics.

Materials and methods. The P. shermanii E2 strain was cultivated on a nutrient medium with the following composition: yeast autolysate, 40 cm3/dm3, KH2PO4, 4 g/dm3, CoCl2, 1 cm3/dm3, and hydrolyzed milk up to 1 dm3. The enzymatic activity of the strain was determined by using the API ZYM test system (BioMerieux, France). Proteolytic activity was determined by the TNBS method (2,4,6-trinitrobenzenesulfonic acid) and expressed in mmol/l leucine equivalents. Antioxidant activity was determined by the ORAC method. The content of organic acids was evaluated by high performance liquid chromatography (HPLC), and vitamin B12 was determined by high performance liquid chromatography with a mass spectrometric detector (HPLC-MS).

Results. The profile of the enzymatic activity of P. shermani E2, it’s proteolytic and antioxidant activity was determined, in addition, the content of organic acids and vitamin B12 in cell-free supernatants was determined. It was found that the strain has a pronounced aminopeptidase activity, high activity of acid phosphatase, α-galactosidase and β-galactosidase. However, the activities of trypsin, lipase, β-glucornidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fructosidase were not observed. An increase in proteolytic and antioxidant activity during the cultivation of P. shermanii E2 was shown. An increase in proteolytic and antioxidant activity during the cultivation of P. shermanii E2 was shown. The highest values of proteolytic and antioxidant activity were reached after 72 h of cultivation P. shermanii E2. In addition, cell-free supernatants obtained after 72 hours of P. shermanii E2 cultivation showed the highest content of propionic, acetic and succinic acids – (4858.0±173) mg/dm3, (1542.0±44) mg/dm3, (338.0±11) mg/dm3, respectively, and the amount of vitamin B12 was (3.67±0.05) µg/dm3. Taking into account that the probiotic properties of the strains are associated with the formation of certain metabolites, the conducted studies allow us to conclude that the P. shermani E2 strain has a probiotic potential and the possibility of its use not only as part of starter cultures, but also in the production of postbiotics.

Conclusions. The use of postbiotic in food production as food additives will correspond to the expansion of the market for functional products, and the determination of their biological applicability will expand the field of postbiotics.

About the Authors

Anna V. Begunova
All-Russian Dairy Research Institute
Russian Federation


Nikolay A. Zhizhin
All-Russian Dairy Research Institute
Russian Federation


References

1. Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food chemistry, 27(6), 1256-1262. https://doi.org/10.1021/jf60226a042

2. Arpaia, N., Campbell, C., Fan, X., Dikiy, S., Van Der Veeken, J., Deroos, P., ... & Rudensky, A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451-455. https://doi.org/10.1038/nature12726

3. Begunova, A. V., Rozhkova, I. V., Glazunova, O. A., Moiseenko, K. V., Savinova, O. S., & Fedorova, T. V. (2021). Fermentation Profile and Probiotic-Related Characteristics of Bifidobacterium longum MC-42. Fermentation, 7(3), 101. https://doi.org/10.3390/fermentation7030101

4. Bush, R. S., & Milligan, L. P. (1971). Study of the mechanism of inhibition of ketogenesis by propionate in bovine liver. Canadian Journal of Animal Science, 51(1), 121-127. https://doi.org/10.4141/cjas71-016

5. Cockburn, D. W., & Koropatkin, N. M. (2016). Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. Journal of molecular biology, 428(16), 3230-3252. https://doi.org/10.1016/j.jmb.2016.06.021

6. Cousin, F. J., Mater, D. D., Foligné, B., & Jan, G. (2011). Dairy propionibacteria as human probiotics: a review of recent evidence. Dairy science & technology, 91(1), 1-26. https://doi.org/10.1051/dst/2010032

7. Cousin, F. J., Jouan-Lanhouet, S., Dimanche-Boitrel, M. T., Corcos, L., & Jan, G. (2012). Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PloS one, 7(3), e31892. https://doi.org/10.1371/journal.pone.0031892

8. EFSA Panel on Biological Hazards (BIOHAZ). (2013). Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA Journal, 11(11), 3449. https://doi.org/10.2903/j.efsa.2013.3449

9. Gardner, N., & Champagne, C. P. (2005). Production of Propionibacterium shermanii biomass and vitamin B12 on spent media. Journal of applied microbiology, 99(5), 1236-1245. https://doi.org/10.1111/j.1365-2672.2005.02696.x

10. Hugenholtz, J., Hunik, J., Santos, H., & Smid, E. (2002). Nutraceutical production by propionibacteria. Le Lait, 82(1), 103-112. https://doi.org/10.1051/LAIT:2001009

11. Indira, M., Venkateswarulu, T. C., Abraham Peele, K., Bobby, N., & Krupanidhi, S. (2019). Bioactive molecules of probiotic bacteria and their mechanism of action: a review. 3 Biotech, 9(8), 1-11. https://doi.org/10.1007/s13205-019-1841-2

12. Izuddin, W. I., Humam, A. M., Loh, T. C., Foo, H. L., & Samsudin, A. A. (2020). Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants, 9(3), 250. https://doi.org/10.3390/antiox9030250.

13. Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of functional foods, 1(2), 177-187. https://doi.org/10.1016/j.jff.2009.01.007

14. Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., & Hutkins, R. (2017). Health benefits of fermented foods: microbiota and beyond. Current opinion in biotechnology, 44, 94-102. https://doi.org/ 10.1016/j.copbio.2016.11.010.

15. Molina-Tijeras, J. A., Gálvez, J., & Rodríguez-Cabezas, M. E. (2019). The immunomodulatory properties of extracellular vesicles derived from probiotics: a novel approach for the management of gastrointestinal diseases. Nutrients, 11(5), 1038. https://doi.org/ 10.3390/nu11051038.

16. Murooka, Y., Piao, Y., Kiatpapan, P., & Yamashita, M. (2005). Production of tetrapyrrole compounds and vitamin B12 using genetically engineering of Propionibacterium freudenreichii. An overview. Le Lait, 85(1-2), 9-22. https://doi.org/10.1051/LAIT:2004035

17. Nishiyama, K., Takaki, T., Sugiyama, M., Fukuda, I., Aiso, M., Mukai, T., ... & Okada, N. (2020). Extracellular vesicles produced by Bifidobacterium longum export mucin-binding proteins. Applied and environmental microbiology, 86(19), e01464-20. https://doi.org/10.1128/AEM.01464-20.

18. Nowak, G., Clifton, G. L., & Bakajsova, D. (2008). Succinate ameliorates energy deficits and prevents dysfunction of complex I in injured renal proximal tubular cells. Journal of Pharmacology and Experimental Therapeutics, 324(3), 1155-1162. https://doi.org/10.1124/jpet.107.130872

19. Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kieliszek, M., & Ścibisz, I. (2018). Propionibacterium spp.—source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied microbiology and biotechnology, 102(2), 515-538. https://doi.org/10.1007/s00253-017-8616-7.

20. Poluektova, E., Yunes, R., & Danilenko, V. (2021). The putative antidepressant mechanisms of probiotic bacteria: relevant genes and proteins. Nutrients, 13(5), 1591. https://doi.org/10.3390/nu13051591

21. Rabah, H. (2017). Luiz Rosa do Carmo F. Jan G. Dairy Propionibacteria: Versatile Probiotics. Microorganisms, 5, 24. https://doi.org/10.3390/microorganisms5020024

22. Raveschot, C., Cudennec, B., Coutte, F., Flahaut, C., Fremont, M., Drider, D., & Dhulster, P. (2018). Production of bioactive peptides by Lactobacillus species: from gene to application. Frontiers in Microbiology, 9, 2354. https://doi.org/10.3389/fmicb.2018.02354

23. Rezac, S., Kok, C. R., Heermann, M., & Hutkins, R. (2018). Fermented foods as a dietary source of live organisms. Frontiers in microbiology, 9, 1785. https://doi.org/10.3389/fmicb.2018.01785

24. Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M., ... & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9), 649-667. https://doi.org/10.1038/s41575-021-00440-6

25. Tagliazucchi, D., Martini, S., & Solieri, L. (2019). Bioprospecting for bioactive peptide production by lactic acid bacteria isolated from fermented dairy food. Fermentation, 5(4), 96. https://doi.org/10.3390/fermentation5040096

26. Todorov, S. D., Tagg, J. R., & Ivanova, I. V. (2021). Could Probiotics and Postbiotics Function as “Silver Bullet” in the Post-COVID-19 Era?. Probiotics and Antimicrobial Proteins, 13(6), 1499-1507. https://doi.org/10.1007/s12602-021-09833-0

27. Vorobjeva, L. I., Khodjaev, E. Y., & Vorobjeva, N. V. (2008). Propionic acid bacteria as probiotics. Microbial Ecology in Health and Disease, 20(2), 109-112. https://doi.org/10.1080/08910600801994954

28. Wang, H., Xia, B., Lin, M., Wang, Y., Sun, B., & Li, Y. (2020). Succinic acid inhibits the activity of cytochrome P450 (CYP450) enzymes. Pharmaceutical biology, 58(1), 1159-1164. https://doi.org/10.1080/13880209.2020.1839110

29. Zárate, G. (2012). Dairy Propionibacteria: Less conventional probiotics to improve the human and animal health. Probiotic in animals, 153-202. https://doi.org/10.5772/50320

30. Zhang, C., Zhang, Y., Li, H., & Liu, X. (2020). The potential of proteins, hydrolysates and peptides as growth factors for Lactobacillus and Bifidobacterium: Current research and future perspectives. Food & function, 11(3), 1946-1957. https://doi.org/10.1039/c9fo02961c

31. Begunova, A. V., & Rozhkova, I. V. (2021). Ocenka antagonisticheskoj aktivnosti propionovokislyh bakterij i associacij s ih ispol'zovaniem [Evaluation of the antagonistic activity of propionic acid bacteria and associations with their use]. In Aktual'nye napravleniya nauchnyh issledovanij: tekhnologii, kachestvo i bezopasnost' [Current areas of scientific research: technology, quality and safety] (pp. 28-30).

32. Donskaya, G. A., & Drozhzhin, V. M. (2020). Biologicheski aktivnye ingredienty v kislomolochnyh produktah [Biologically active ingredients in dairy products]. Pererabotka moloka [Milk processing], (7), 20-23. https://doi.org/10.33465/2222-5455-2020-07-20-23

33. Zobkova, Z. S., Lazareva, E. G., & SHelaginova, I. R. (2021). Vybor ingredientov s antioksidantnymi svojstvami dlya funkcional'nyh kislomolochnyh produktov [The choice of ingredients with antioxidant properties for functional fermented milk products]. Molochnaya promyshlennost'Dairy industry, (6), 48-49. https://doi.org/10.31515/1019-8946-2021-06-48-49

34. Zobkova, Z. S., & Fursova, T. P. (2020). Razrabotka innovacionnyh tekhnologij kislomolochnyh produktov adaptagennoj napravlennosti [Development of innovative technologies for fermented milk products of adaptogenic orientation]. Aktual'nye voprosy molochnoj promyshlennosti, mezhotraslevye tekhnologii i sistemy upravleniya kachestvom, 1(1) [Actual issues of the dairy industry, cross-industry technologies and quality management systems], 205-214. https://doi.org/10.37442/978-5-6043854-1-8-2020-1-205-214

35. Korosteleva, M. M., & Agarkova, E. YU. (2020). Principy obogashcheniya pishchevyh produktov funkcional'nymi ingredientami [Principles of Food Fortification with Functional Ingredients]. Molochnaya promyshlennost'Dairy industry, (11), 6-8. https://doi.org/10.31515/1019-8946-2020-11-6-8

36. Fajzullina, R. A., Samorodnova, E. A., & Fedotova, O. B. (2019). Kislomolochnye produkty v pitanii detej rannego vozrasta: evolyuciya ot tradicionnyh k funkcional'nym [Fermented milk products in the nutrition of young children: evolution from traditional to functional]. Rossijskij vestnik perinatologii i pediatrii [Russian Bulletin of Perinatology and Pediatrics], 64(4), 133-140. https://doi.org/ 10.21508/1027-4065-2019-64-4-133-140


Supplementary files

1. Рисунок 1. Профиль ферментативной активности (API ZYM) штамма P. shermanii Э2
Subject
Type Исследовательские инструменты
View (55KB)    
Indexing metadata ▾
2. Сопроводительное письмо ВНИМИ
Subject
Type Исследовательские инструменты
Download (477KB)    
Indexing metadata ▾
3. Сопроводительное письмо
Subject
Type Исследовательские инструменты
Download (166KB)    
Indexing metadata ▾
4. Сведения об авторах
Subject
Type Other
Download (13KB)    
Indexing metadata ▾

Review

For citations:


Begunova A.V., Zhizhin N.A. Evaluation of the Potential of Propionic Acid Bacteria for Obtaining Postbiotics. Storage and Processing of Farm Products. 2022;(4). (In Russ.) https://doi.org/10.36107/spfp.2022.356

Views: 441


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)