Study on the Effect of Sugar Beet Pulp Pretreatment (Beta Vulgaris L.) on the Molecular Structure of Lignin
https://doi.org/10.36107/spfp.2022.364
Abstract
Background: Lignin is a complex polyphenolic compound with a network structure, which is part of the matrix of the cell wall of higher plants and gives it mechanical rigidity and microbiological resistance. Existing studies of the molecular characteristics of lignin mainly affect the lignin of wood of various species and, in rare cases, the lignin of secondary raw materials, which makes research in this area relevant for different types of plant materials. The article presents studies of the features of the chemical bond between sugar beet lignin (Beta vulgaris L.) and the cell wall matrix. Materials and methods: The object of research is sugar beet pulp. The research methodology included obtaining a preparation of hydrolytic lignin and its spectra in the infrared region.
Results: In the course of the work, it was found that with the exclusion of the hemicellulose extraction stage in the process of preparing raw materials for the production of lignin, the quality of the obtained samples does not change. The results of IR spectroscopy showed that the obtained samples contain pectin in combination with lignin. The interaction of pectin and lignin occurs with the help of ferulic acid residues through ester bonds.
Conclusion: As a result of the research, it was found that the method of extracting lignin from plant materials does not affect the quality of the resulting preparation. In the composition of the matrix of sugar beet cell walls, there is a strong connection of lignin and some part of pectin through bridges from ferulic acid residues. This can potentially contribute to the partial manifestation of the lignin preparation isolated from sugar beet pulp, additional physical and chemical properties.
About the Authors
Maria A. TsarevaRussian Federation
Egor V. Kazantsev
Russian Federation
Irina V. Protunkevich
Russian Federation
Elena D. Gorjacheva
Russian Federation
References
1. Sarkanen, K.V., & Ludwig, C.H. (eds) (1971). Lignins: Occurrence, formation, structure and reactions. John Wiley & Sons, New York. 916 pp.
2. Adler, E., & Marton, J. (1959). Carbonyl groups in lignin. I. Acta Chem Scand, 13(2):75-96. https://doi.org/10.3891/acta.chem.scand.13-0075
3. Chang, H., Cowling, E.B., & Brown, W. (1975). Comparative Studies on Cellulolytic Enzyme Lignin and Milled Wood Lignin of Sweetgum and Spruce. Mitteilungen zur Chemie, Physik, Biologie und Technologie des Holzes, 29(5):153-159. https://doi.org/10.1515/hfsg.1975.29.5.153
4. Shorygina, N.N., Reznikov, V.M., & Elkin, V.V. (1976). The Reactivity of Lignin. Moscow, Nauka Publ. 368 p.
5. Tarabanko, V.E., Kudrashev, A.V., Pervyshina, E.P., Kuznetsov, B.N., & Koropachinskaya, N.V. (1998). New processes for the separation of vanillin and lilac aldehyde. Himija rastitel'nogo syr'ja = Chemistry of Plant Raw Materials, 3:93-97.
6. Grushnikov, O.P., & Elkin, V.V. (1973). Advances and problems in lignin chemistry. Moscow, Nauka Publ.. 296 с.
7. Karpunin, I.I., Kuzmich, V.V., & Kozlov, N.G. (2013). On the nature of the lignocarbohydrate complex relationship of spruce wood. Vesci Nacyjanal'naj akadjemii navuk Belarusi. Seryja himichnyh navuk = Proceedings of the National Academy of Sciences of Belarus. Series of Chemical Sciences, 1:115-120.
8. Dudkin, M.S., Gromov, V.S., Vedernikov, N.A., Katkevich, R.G., & Cherno, N.K. (1991). Hemicelluloses. Riga, Zinatne Publ. 488 p.
9. Chua, M.G.S., Chen, Ch.-L., Chang, H.-M. & Kirk, T.K. (1982). 13C NMR Spectroscopic Study of Spruce Lignin Degraded Phanerochaete Chrysosporium. Holzforschung, 36(4):165-172. https://doi.org/10.1515/hfsg.1982.36.4.165
10. Fengel, D., & Wegener, G. (ed.). (2011). Wood: chemistry, ultrastructure, reactions. Berlin, New York, Walter de Gruyter. 2011. 157 p. https://doi.org/10.1515/9783110839654
11. Eriksson, Ö., Goring, D.A.I. & Lindgren, B.O. (1980). Structural studies on the chemical bonds between lignins and carbohydrates in spruce wood. Wood Sci. Technol., 14:267-279. https://doi.org/10.1007/BF00383454
12. Gellerstedt G., & Pettersson E.-L. (1975). Light-induced oxidation of lignin. The behaviour of structural units containing a ring-conjugated double bond // Acta Chem Scand B, (29):1005-1010. https://doi.org/10.3891/acta.chem.scand.29b-1005
13. Fergus, B.J., Procter, A.R., Scott, J.A.N. et al. (1969). The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci. Technol., 3:117-138. https://doi.org/10.1007/BF00639636
14. Hatakeyama, H, & Kubota, K (1972) Thermal analysis of lignin by differential scanning calorimetry. Cellulose Chem Technol, 6(5):521-529.
15. Koshijima, T., Watanabe, T., & Yaku, F. Structure and properties of the lignin-carbohydrate complex polymer as an amphipathic substance. In: Glasser, W.G., & Sarkanen, S. (eds) (1989). Lignin: properties and material. ACS Symp Ser, 397:11-28. https://doi.org/10.1021/bk-1989-0397.ch002
16. Lai, Y.-Z., & Sarkanen, K.V. Isolation and structural studies. In: Sarkanen K.V., & Ludwig C.H. (eds) (1971). Lignins. Occurrence, formation, structure and reactions. Wiley-Interscience, New York. pp. 165-189.
17. Lin, S.Y., & Detroit, W. (1981). Chemical heterogeneity of technical lignins: Its significance in lignin utilization. In: Proceedings of the 1st International Symposium on Wood and Pulping Chemistry. Stockholm, Sweden. pp. 44-52.
18. Oganesyants, L.A., Panasyuk, A.L., & Kuzmina, E.I. (2019). Rational use of the secondary resources of the vineyard and winebranding industry. Food systems, 2(2):20-26. https://doi.org/10.21323/2618-9771-2019-2-2-20-26
19. Kondratenko, V.V. et al. (2018). On deactivation of pectin-containing raw materials by the example of sugar beet pulp. Scientific Nauchnye trudy SKFNCSVV = Proceedings of the North-Caucasus Federal Scientific Center for Horticulture, Viticulture and Winemaking, 21:42-48. https://www.kubansad.ru/media/uploads/files/nauchnye_trudy_skzniisiv/tom_21/07.pdf
20. Tsareva, M.A. (2017). Development of scientifically justified parameters of sugar beet pulp deactivation before step-by-step fermentation. In: The collection of research papers of the XI International Scientific-Practical Conference of Young Scientists and Specialists of the Department of Agricultural Sciences of the Russian Academy of Sciences: Food Systems: Theory, Methodology, Practice. Moscow, VNIIHI - branch of Gorbatov Federal Research Center fo Food Systems. С. 354-354.
21. Kondratenko, V.V. et al. (2016). Influence of processing modes on some properties of beet pulp polyglycans. In Proceedings of VI International Scientific and Practical Conference "Innovative food technologies in the field of storage and processing of agricultural raw materials: fundamental and applied aspects". Krasnodar. pp. 42-46.
22. Puchkova, T.S., Pikhalo, D.M., & Karasyova, O.M. (2019). About the universal technology of prcessing Jerusalem artichoke and chicory for inulin. Food systems, 2(2):36-43. https://doi.org/10.21323/2618-9771-2019-2-2-36-43
23. Posokina, N.E., Alabina, N.M., & Davydova, A.Y. (2019). Development of functional beverages from plant raw materials. Food systems, 2(2):44-47. https://doi.org/10.21323/2618-9771-2019-2-2-44-47
24. Krikunova, L.N., Obodeeva, O.N., Zakharov, M.A., & Danilyan, A.V. (2018). Development of technological parameters of the two-stage method of dried Jerusalem artichoke preparation for distillation. Food systems, 1(1):24-34. https://doi.org/10.21323/2618-9771-2018-1-1-24-34
25. Olennikov, D.N., & Tankhaeva, L.M. (2006). Method of quantitative determination of group composition of carbohydrate complex of plant objects. Himija rastitel'nogo syr'ja = Plant chemistry, 4:29-33.
26. Sakovich, G.V., Ilyasov, S.G., Vasilishin, M.S., Budaeva, V.V., & Egorov, V.Yu. (2008). Results of complex processing of biomass. Polzunovskiy Vestnik, 3:259-266.
27. El Mansouri, N.-E., Yuan, Q., & Huang, F. (2011). Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. BioResources, 6(3):2647-2662.
28. Rashid, T., Kait, Ch. F., & Murugesan, Th. (2016). A “Fourier Transformed Infrared” Compound Study of Lignin Recovered from a Formic Acid Process. Procedia Engineering, 148:1312-1319. https://doi.org/10.1016/j.proeng.2016.06.547
29. Lin, S.Y., & Dence, C.W. (eds) (1992). Methods in Lignin Chemistry. Springer Berlin, Heidelberg. 578 p. https://doi.org/10.1007/978-3-642-74065-7
30. Tetsuo, K., & Takashi, W. (2003). Association Between Lignin and Carbohydrates in Wood and Other Plant Tissues. Springer-Verlag, Berlin, Heidelberg. 329 p. https://doi.org/10.1007/978-3-662-05191-7
31. Chylińska, M., Szymańska-Chargot, M., Kruk, B., Zdunek, A., (2016). Study on dietary fibre by Fourier transform-infrared spectroscopy and chemometric methods. Food Chemistry, 196:114-122. doi: http://dx.doi.org/10.1016/j.foodchem.2015.09.029
32. Golubev, V.N., & Shelukhina, N.P. (1995). Pectin: chemistry, technology, application. Moscow, Acad. Technologist. Sciences Publ. 387 с.
33. Sajjadi, S.E., Shokoohinia, Y., & Moayedi, N.S. (2012). Isolation and Identification of Ferulic Acid From Aerial Parts of Kelussia odoratissima Mozaff. Jundishapur J Nat Pharm Prod., 7(4):159-62. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941869
Supplementary files
|
1. Неозаглавлен | |
Subject | ||
Type | Other | |
View
(15KB)
|
Indexing metadata ▾ |
Review
For citations:
Tsareva M.A., Kazantsev E.V., Protunkevich I.V., Gorjacheva E.D. Study on the Effect of Sugar Beet Pulp Pretreatment (Beta Vulgaris L.) on the Molecular Structure of Lignin. Storage and Processing of Farm Products. 2022;(3). (In Russ.) https://doi.org/10.36107/spfp.2022.364