Preview

Storage and Processing of Farm Products

Advanced search

Comparative Evaluation of Spectral Luminescent Characteristics of Milk and Dairy Products

https://doi.org/10.36107/spfp.2023.412

Abstract

Introduction: The development of analytical methods for the control of milk and dairy products is important for their storage and processing. The spectral photoluminescent control method is characterized by high sensitivity and selectivity, does not require chemicals as an expendable material.


Purpose: Investigation of spectral characteristics of photoluminescence of milk and dairy products for the subsequent creation of methods for their control.


Materials and Methods: Spectral luminescent characteristics were measured and parameters of milk, sour cream, cottage cheese and butter were calculated (Agrofirm "Katyn", Smolensk region) in the range of 200–600 nm according to a previously developed technique using a diffraction spectrofluorimeter "Fluorat-02-Panorama".


Results: The range of the greatest excitation of the studied products was 220–340 nm. The main excitation maxima are 231, 262, 271, 288, 308 and 322 nm. For fermented milk products, a peak of 250 nm is added. Photoluminescence spectra and integral parameters of milk practically do not change during souring. At the same time, for short-wave excitation (262 nm), both spectral characteristics and integral fluxes are twice as large as for long wave excitation (442 nm). Comparing the photoluminescence fluxes of sour cream and milk, it can be seen that with short-wave excitation for sour cream, they are about two times lower, and with long-wave they are about the same, which is consistent with the excitation spectra. For cottage cheese, with all the excitation wavelengths used, the spectra turned out to be qualitatively the same, but according to the integral flow, the excitation of 288 nm is the best. Presumably, the luminescence is greater with an increased protein content and a reduced fat content, which is confirmed by the study of the photoluminescence of butter.


Conclusions: To excite milk and fermented milk products, it is most appropriate to use excitation wavelengths of 262 nm (milk), 271 nm (sour cream) and 288 nm (cottage cheese). For butter, you should choose a longer wavelength excitation — 308 nm. At the same time, photoluminescent radiation should be measured in the ranges of 290–400 nm for milk, sour cream and cottage cheese, and for butter — in the range of 340–450 nm. The results obtained can be applied to create express control methods for processing and storing milk and dairy products. 

About the Authors

Mikhail V. Belyakov
Federal Scientific Agroengineering Center VIM
Russian Federation


Evgeny A. Nikitin
Federal Scientific Agroengineering Center VIM
Russian Federation


References

1. Akulinin, I.V., Osincev, A.M., & Braginskij V.I. (2016). Razrabotka kombinirovannogo opticheskogo metoda dlja issledovanija koaguljacii moloka [Development of a combined optical method for the study of milk coagulation]. Tehnika i tehnologija pishhevyh proizvodstv [Equipment and technology of food production], 41(2), 164-169.

2. Belyakov, M. V., Samarin, G. N., Kudrjavcev, A. A., & Efremenkov, I. Ju. (2022). Izmenenie spektral'nyh fotoljuminescentnyh svojstv moloka pri skisanii [Change of spectral photoluminescent properties of milk during souring]. Inzhenernye tehnologii i sistemy [Engineering technologies and systems], 32(3), 460–475. https://doi.org/10.15507/2658-4123.032.202203.460-475

3. Budanina, L.N., Vereshhagin, A.L., & Bychin, N.V. (2017). Issledovanie podlinnosti suhogo moloka metodami termicheskogo analiza i jelektronnoj mikroskopii [Investigation of the authenticity of milk powder by thermal analysis and electron microscopy]. Tehnika i tehnologija pishhevyh proizvodstv [Equipment and technology of food production], 44(1), 93-99.

4. Mel'denberg, D.N., Poljakova, O.S., Semjonova, E.S., & Jurova, E.A. (2020). Razrabotka kompleksnoj ocenki belkovogo sostava moloka syr'ja razlichnyh sel'skohozjajstvennyh zhivotnyh dlja vyrabotki produktov funkcional'noj napravlennosti [Development of a comprehensive assessment of the protein composition of milk raw materials of various farm animals for the production of functional products]. Hranenie i pererabotka sel'hozsyr'ja [Storage and processing of agricultural raw materials]. 3, 118-133. https://doi.org/10.36107/spfp.2020.352

5. Nilova, L.P., & Kambulova, E.V. (2019). Vlijanie termoobrabotki na himicheskij sostav i svojstva sgushhennogo moloka s saharom [The effect of heat treatment on the chemical composition and properties of condensed milk with sugar]. Vestnik JuUrGU. Serija «Pishhevye i biotehnologii» [Bulletin of SUSU. Series "Food and biotechnology"], 7(2), 54–61. https://doi.org/10.14529/food190206

6. Rjazanceva, K.A., Sherstneva, N.E., & Zhizhin, N.A. (2022). Uluchshenie strukturnyh svojstv kislomolochnogo produkta vneseniem modificirovannyh syvorotochnyh belkov [Improvement of the structural properties of the fermented milk product by introducing modified whey proteins]. Hranenie i pererabotka sel'hozsyr'ja [Storage and processing of agricultural raw materials]., 2, 52-66. https://doi.org/10.36107/spfp.2022.342

7. An, C., Yang, K., Zhu, J., Guo, W., Lu, C. & Zhu, X. (2022). Qualitative identification of mature milk adulteration in bovine colostrum using noise-reduced dielectric spectra and linear model. J Sci Food Agric, 102, 7313-7322. https://doi.org/10.1002/jsfa.12097

8. Arroyo-Cerezo, A., Jiménez-Carvelo, A. M., González-Casado, A., Ruisánchez, I., & Cuadros-Rodríguez, L. (2023). The potential of the spatially offset Raman spectroscopy (SORS) for implementing rapid and non-invasive in-situ authentication methods of plastic-packaged commodity foods – Application to sliced cheeses. Food Control, 146, 109522. 10.1016/j.foodcont.2022.109522

9. Ashoorirad, M., Baghbani, R., & Ghalamboran, M.R. (2021). Bioimpedance sensor to detect water content in milk based on van Der Pauw method. IET Nanobiotechnol., 15(7), 611– 618. https://doi.org/10.1049/nbt2.12056

10. Batesttin, C., Ângelo, F.F., Rocha, R.A., Anjos, V., & Bell, M.J.V. (2022). High resolution raman spectroscopy of raw and UHT bovine and Goat milk, Measurement. Food, 6, 100029. 10.1016/j.meafoo.2022.100029

11. Biçer, Y. & Sönmez, G. (2022). Detecting cow milk in sheep yoghurt by TaqMan real-time PCR. Int J Dairy Technol, 75, 803-808. https://doi.org/10.1111/1471-0307.12892

12. Boukria, O., Wang, J., Safarov, J., Gharsallaoui, A., Leriche, F., El Hadrami, E. M., & Aït-Kaddour, A. (2022). Delineation of molecular structure modification during coagulation of mixed camel and cow milk by mid-infrared spectroscopy and parallel factor analysis. Journal of Food Processing and Preservation, 46, e15839. https://doi.org/10.1111/jfpp.15839

13. Dorokhov, A., Samarin, G.N., Kudryavtsev, A., Efremenkov, I., Ershova, I. & Belyakov, M. (2023). Control of milk acidity by photoluminescence. Int J Food Sci Technol, 58, 222-227. https://doi.org/10.1111/ijfs.16195

14. Du, L., Lu, W., Zhang, Y., Gao, B., & Yu, L. (2020). Detection of milk powder in liquid whole milk using hydrolyzed peptide and intact protein mass spectral fingerprints coupled with data fusion technologies. Food Sci Nutr., 8, 1471– 1479. https://doi.org/10.1002/fsn3.1430

15. Ehsani, S., Dastgerdy, E.M., Yazdanpanah, H., & Parastar, H. (2022). Ensemble classification and regression techniques combined with portable near infrared spectroscopy for facile and rapid detection of water adulteration in bovine raw milk. Journal of Chemometrics., 37(1), e3395. https://doi.org/10.1002/cem.3395

16. El Orche A., Mamad A., Elhamdaoui O., Cheikh A., El Karbane M., & Bouatia M. (2021). Comparison of Machine Learning Classification Methods for Determining the Geographical Origin of Raw Milk Using Vibrational Spectroscopy. Journal of Spectroscopy, 2021, 1-9. https://doi.org/10.1155/2021/5845422

17. Ghasemi, J. B., Hosseini, E., Daraei, B., Asadi, G., & Adib, N. (2021). Near-infrared spectroscopy and machine learning-based classification and calibration methods in detection and measurement of anionic surfactant in milk. Journal of Food Composition and Analysis, 104, 104170. 10.1016/j.jfca.2021.104170

18. Hosseini, E., Ghasemi, J.B., Daraei, B., Asadi, G. & Adib, N. (2021). Application of genetic algorithm and multivariate methods for the detection and measurement of milk-surfactant adulteration by attenuated total reflection and near-infrared spectroscopy. J Sci Food Agric, 101, 2696-2703. https://doi.org/10.1002/jsfa.10894

19. Hu, Y. & Lu, X. (2016). Rapid Detection of Melamine in Tap Water and Milk Using Conjugated “One-Step” Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor. Journal of Food Science, 81, N1272-N1280. https://doi.org/10.1111/1750-3841.13283

20. Khan, A., Munir, M.T., Yu, W. & Young, B.R. (2021). Near-infrared spectroscopy and data analysis for predicting milk powder quality attributes. Int. J. Dairy Technol., 74, 235-245. https://doi.org/10.1111/1471-0307.12734

21. Li, Q., Yu, Z., Zhu, D., Meng, X., Pang, X., Liu, Y., Frew, R., Chen, H. & Chen, G. (2017). The application of NMR-based milk metabolite analysis in milk authenticity identification. J. Sci. Food Agric., 97, 2875-2882. https://doi.org/10.1002/jsfa.8118

22. Liang, W, Zhu, Z, Yang, B, Zhu, X, & Guo, W. (2021). Detecting melamine-adulterated raw milk by using near-infrared transmission spectroscopy. J Food Process Eng. 44, e13685. https://doi.org/10.1111/jfpe.13685

23. Oh, H.E., Eathorne, S. & Jones, M.A. (2022). Use of biosensor technology in analysing milk and dairy components: A review. Int J Dairy Technol, 75, 738-748. https://doi.org/10.1111/1471-0307.12900

24. Ostovar pour, S., Afshari, R., Landry, J., Pillidge, C., Gill, H., & Blanch, E. (2021). Spatially offset Raman spectroscopy: A convenient and rapid tool to distinguish cheese made with milks from different animal species. J Raman Spectrosc, 52(10), 1705. https://doi.org/10.1002/jrs.6179

25. Panikuttira, B., Payne, F.A., O'Shea, N., Tobin, J.T., O'Callaghan, D.J. & O'Donnell, C.P. (2020). Investigation of an in-line prototype fluorescence and infrared backscatter sensor to monitor rennet-induced coagulation of skim milk at different protein concentrations. Int J Food Sci Technol, 55, 175-182. https://doi.org/10.1111/ijfs.14267

26. Piacenza, E., Chillura Martino, D. F., Cinquanta, L., Conte, P., & Lo Meo, P. (2022). Differentiation among dairy products by combination of fast field cycling NMR relaxometry data and chemometrics. Magn Reson Chem., 60(3), 369. https://doi.org/10.1002/mrc.5226

27. Ranvir, S., Sharma, R., Gandhi, K., Upadhyay, N. & Mann, B. (2020). Assessment of proteolysis in ultra-high temperature milk using attenuated total reflectance–Fourier transform infrared spectroscopy. Int J Dairy Technol, 73, 366-375. https://doi.org/10.1111/1471-0307.12683

28. Roy, M., Doddappa, M., Yadav, B.K., Jaganmohan, R., Sinija, V.R., Manickam, L. & Sarvanan, S. (2022). Detection of soybean oil adulteration in cow ghee (clarified milk fat): an ultrafast study using flash gas chromatography electronic nose coupled with multivariate chemometrics. J Sci Food Agric, 102, 4097-4108. https://doi.org/10.1002/jsfa.11759

29. Singh, V. R., Pandey, S. P., & Singh P. K. (2022). A unique supramolecular assembly between sulfated cyclodextrin, silver and melamine: Towards a fluorescence based dual wavelength detection approach for melamine, Journal of Photochemistry and Photobiology A: Chemistry, 428, (113862). https://doi.org/10.1016/j.jphotochem.2022.113862

30. Spina, A. A., Ceniti, C., Piras, C., Tilocca, B., Britti, D., & Morittu, V. M. (2022). Mid-infrared (MIR) spectroscopy for the detection of cow’s milk in buffalo milk. Journal of Animal Science and Technology, 64(3), 531-538. https://doi.org/10.5187/jast.2022.e22

31. Stefanakis, M., Bassler, M. C., Böltzig, T., Ostertag, E., Allnoch, D., Zuber, R., Brecht, M., & Rebner, K. (2022). Improved Process Control by Using the Effective Scattering Coefficients to Determine the Fat Content in Homogenized Cow-Based Milk with Multivariate Data Modeling. ACS Food Science & Technology, 2(3), 548-557. https://doi.org/10.1021/acsfoodscitech.1c00435

32. Stevens, F., Beghuin, D., Delgrange, M., Arnould, Q., Baeten, V., & Fernández Pierna, J. A. (2022). Raman Fourier transform imaging: Application to melamine and melamine-milk powder mixtures analysis. J Raman Spectrosc., 53(11), 1947. https://doi.org/10.1002/jrs.6415

33. Tarapoulouzi, M., Kokkinofta, R., & Theocharis, C.R. (2020). Chemometric analysis combined with FTIR spectroscopy of milk and Halloumi cheese samples according to species’ origin. Food Sci Nutr., 8, 3262– 3273. https://doi.org/10.1002/fsn3.1603

34. Tarapoulouzi M., Theocharis C. R. (2021). Discrimination of Cheddar, Kefalotyri, and Halloumi cheese samples by the chemometric analysis of Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectra. Journal of Food Process Engineering, 45, 7. https://doi.org/10.1111/jfpe.13933

35. Unger, P., Sekhon, A. S., Chen, X., & Michael, M. (2022). Developing an affordable hyperspectral imaging system for rapid identification of Escherichia coli O157:H7 and Listeria monocytogenes in dairy products. Food Science & Nutrition, 10, 1175– 1183. https://doi.org/10.1002/fsn3.2749

36. Vasafi P. S., Paquet-Durand O., Brettschneider K., Hinrichs J., & Hitzmann B. (2021). Anomaly detection during milk processing by autoencoder neural network based on near-infrared spectroscopy. Journal of Food Engineering, 299, 110510. https://doi.org/10.1016/j.jfoodeng.2021.110510

37. Vasafi, P. S. & Hitzmann, B. (2022). Comparison of various classification techniques for supervision of milk processing. Eng Life Sci., 22, 279– 287. https://doi.org/10.1002/elsc.202100098

38. Wang, Y., Guo, W., Zhu, X. & Liu, Q. (2019). Effect of homogenisation on detection of milk protein content based on NIR diffuse reflectance spectroscopy. Int J Food Sci Technol, 54, 387-395. https://doi.org/10.1111/ijfs.13948

39. Yazgan, N.N., Genis, H.E., Bulat, T., Topcu, A., Durna, S., Yetisemiyen, A. & Boyaci, I.H. (2020). Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk. J Sci Food Agric, 100, 4756-4765. https://doi.org/10.1002/jsfa.10534

40. Zhang, T., Wu, X., Wu, B., Dai, C., & Fu, H. (2022). Rapid authentication of the geographical origin of milk using portable near-infrared spectrometer and fuzzy uncorrelated discriminant transformation. Journal of Food Process Engineering, 45(8), e14040. https://doi.org/10.1111/jfpe.14040

41. Zheng, B, Yu, Y, Wang, M, Wang, J, & Xu, H. (2022). Qualitative-quantitative analysis of multi-mycotoxin in milk using the high-performance liquid chromatography-tandem mass spectrometry coupled with the quick, easy, cheap, effective, rugged and safe method. J Sep Sci., 45, 432– 440. https://doi.org/10.1002/jssc.202100641


Supplementary files

Review

For citations:


Belyakov M.V., Nikitin E.A. Comparative Evaluation of Spectral Luminescent Characteristics of Milk and Dairy Products. Storage and Processing of Farm Products. 2023;(2):90-102. (In Russ.) https://doi.org/10.36107/spfp.2023.412

Views: 400


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)