Preview

Storage and Processing of Farm Products

Advanced search

Introduction of Algorithm for Diagnostics of Emergency Situations in the System of Automated Control of the Canned Sterilization Process

https://doi.org/10.36107/spfp.2024.1.415

Abstract

Despite the number, variety and originality of the decisions taken in the implementation of automatic control systems for the process of heat treatment of canned food in batch sterilizers, they do not have a well-developed system for diagnosing and preventing accidents that meets all the requirements of the production process, which makes the task of creating it relevant. The article proposes a control algorithm that best meets all the technical criteria for the automation of the canned food sterilization process in an industrial autoclave and has all the necessary protections and locks for trouble-free operation of the control system. The article suggests the structure of the automated control system, which allows to fully implement the proposed algorithm. The proposed algorithm of operation and the developed structure of the control system ensure accurate and trouble-free operation of the installation. Taking into account the possibility of accidents in the algorithm of operation ensures a reduction in the share of defective finished products, which is confirmed by production tests. The proposed approach to emergency diagnostics can be effectively used in the design of control systems for devices that implement similar product processing technologies.

About the Authors

Sergey A. Mokrushin
Russian Biotechnological University
Russian Federation


Ivan G. Blagoveshchenskiy
Russian Biotechnological University
Russian Federation


Margarita M. Blagoveshchenskaya
Russian Biotechnological University
Russian Federation


Sergey I. Okhapkin
Vyatka State University
Russian Federation


Vladislav G. Blagoveshchensky
MIREA - Russian Technological University
Russian Federation


References

1. Ахмедов, М.Э. (2011). Разработка и создание новых ресурсосберегающих способов консервирования и эффективных устройств и аппаратов для тепловой стерилизации консервов [дис. д-ра техн. наук: 05.18.12]. Махачкала: Дагестанский государственный технический университет.

2. Бабарин, В.П. (1994). Тепловая стерилизация плодоовощных консервов (теория и практика) [дис. д-ра техн. наук]. Москва: Всероссийский научно-исследовательский институт консервной и овощной промышленности.

3. Власов А.В. (2010). Повышение эффективности стерилизации консервов паром в автоклавах [дис. канд. техн. наук]. Мурманск: Мурманский государственный технический университет.

4. Выскубов Е.В. (1996). Разработка микропроцессорных систем управления периодическими процессами тепловой обработки пищевых продуктов (на примере САУ стерилизации консервов) [дис. канд. техн. наук]. Краснода: Кубанский государственный технологический университет.

5. Кайченов, А.В. (2011). Разработка и исследование модернизированного способа стерилизации консервов из гидробионтов [дис. канд. техн. наук]. Мурманск: Мурманский государственный технический университет.

6. Мокрушин, С.А. (2019). Разработка автоматизированной системы управления технологическим процессом стерилизации консервов в промышленном автоклаве [дис. канд. техн. наук]. Москва: Московский государственный университет пищевых производств.

7. Abid, A., Khan, M.T. & Iqbal, J. (2021) A review on fault detection and diagnosis techniques: basics and beyond. Artif Intell Rev, 54, 3639–3664. https://doi.org/10.1007/s10462-020-09934-2

8. Farid, M., & Ghani, A. G. A. (2004). A new computational technique for the estimation of sterilization time in canned food. Chemical Engineering and Processing: Process Intensification, 43(4), 523-531. https://doi.org/10.1016/j.cep.2003.08.007

9. Ghani, A. G. A., Farid, M. M., Chen, X. D. & Richards, P. (2001). Thermal sterilization of canned food in a 3-D pouch using computational fluid dynamics. Journal of Food Engineering, 48(2), 147-156. https://doi.org/10.1016/S0260-8774(00)00150-3

10. Gonçalves, E. C., Minim, L. A., Coimbra, J. S. R. & Minim, V. P. R.. (2005). Modeling sterilization process of canned foods using artificial neural networks. Chemical Engineering and Processing: Process Intensification, 44(12), 1269-1276. https://doi.org/10.1016/j.cep.2005.04.001

11. Kaychenov, A., Vlasov, A., Maslov, A., Selyakov, I., & Glukhikh, Y. (2020). Development of an Autoclave Thermal Processes Model for the Simulator of Canned Food Sterilization Process. KnE Life Sciences, 437-449. https://doi.org/10.18502/kls.v5i1.6103

12. Kovalev, I., Kovalev, D., Testoyedov, N., Voroshilova, A., & Bartenev, V. (2021). An approach to reducing the probabilities of dangerous failures in production control systems. In AIP Conference Proceedings (Vol. 2402, No. 1). AIP Publishing. https://doi.org/10.1063/5.0071400

13. Llave, Y. A., Hagiwara, T., & Sakiyama, T. (2012). Artificial neural network model for prediction of cold spot temperature in retort sterilization of starch-based foods. Journal of Food Engineering, 109(3), 553-560. https://doi.org/10.1016/j.jfoodeng.2011.10.024

14. Miri, T., Tsoukalas, A., Bakalis, S., Pistikopoulos, E. N., Rustem, B. & Fryer, P. J. (2008). Global optimization of process conditions in batch thermal sterilization of food. Journal of Food Engineering, 87(4), 485-494. https://doi.org/10.1016/j.jfoodeng.2007.12.032

15. Park, Y. J., Fan, S. K. S., & Hsu, C. Y. (2020). A review on fault detection and process diagnostics in industrial processes. Processes, 8(9), 1123. https://doi.org/10.3390/pr8091123

16. Pitarch, J. L., Vilas, C., de Prada, C., Palacín, C. G., & Alonso, A. A. (2021). Optimal operation of thermal processing of canned tuna under product variability. Journal of Food Engineering, 304, 110594. https://doi.org/10.1016/j.jfoodeng.2021.110594

17. Shahsavand, A., & Nozari, Y. (2009). Simulation of a continuous thermal sterilization process in the presence of solid particles. Scientia Iranica. Transaction C, Chemistry, Chemical Engineering, 16(1), 29.

18. Silva, C. Hendrickx, M., Oliveira, F. & Tobback, P. (1992). Optimal sterilization temperatures for conduction heating foods considering finite surface heat transfer coefficients. Journal of Food Science, 57(3), 743-748. https://doi.org/10.1111/j.1365-2621.1992.tb08086.x

19. Siriwattanayotin, S., Yoovidhya, T., Meepadung, T. & Ruenglertpanyakul, W. (2006). Simulation of sterilization of canned liquid food using sucrose degradation as an indicator. Journal of Food Engineering, 73(4), 307-312. https://doi.org/10.1016/j.jfoodeng.2004.08.008

20. Szpicer, A., Bińkowska, W., Wojtasik-Kalinowska, I., Salih, S. M., & Półtorak, A. (2023). Application of computational fluid dynamics simulations in food industry. European Food Research and Technology, 249(6), 1411-1430. https://doi.org/10.1007/s00217-023-04231-y

21. Zhuk, A., Stolyanov, A., Kaychenov, A., Kuranova, L., & Grokhovsky, V. (2021). Software for calculating the actual lethality of canned food heat treatment processes: development and application. In E3S Web of Conferences (Vol. 273, p. 13002). EDP Sciences. https://doi.org/10.1051/e3sconf/202127313002


Supplementary files

1. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (593KB)    
Indexing metadata ▾

Review

For citations:


Mokrushin S.A., Blagoveshchenskiy I.G., Blagoveshchenskaya M.M., Okhapkin S.I., Blagoveshchensky V.G. Introduction of Algorithm for Diagnostics of Emergency Situations in the System of Automated Control of the Canned Sterilization Process. Storage and Processing of Farm Products. 2024;32(1). (In Russ.) https://doi.org/10.36107/spfp.2024.1.415

Views: 237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)