Killer Toxins of Ascomycete Yeast Suppressing Phytopathogenic Fungi Botrytis cinerea
https://doi.org/10.36107/spfp.2023.440
Abstract
Introduction: The problem of contamination of agricultural crops and plant raw materials by spoilage microorganisms is urgent — the damage caused by them to agriculture is growing from year to year. The use of pesticides can negatively affect the quality of raw materials and the health of consumers. A unilateral approach to solving this issue does not lead to positive results. Yeast killer toxins (KT) are of considerable interest for biotechnology as drugs that suppress the activity of pathogens.
Purpose: The purpose of this study is to screen ascomycete yeast strains from the collection of the National Bioresource Center of the All-Russian Collection of Industrial Microorganisms of the Kurchatov Institute Research Center,which exhibit the greatest killer activity in relation to phytopathogenic fungi of the Botrytis cinerea species, as well as to determine the factors affecting its effectiveness.
Materials and Methods: KT activity was determined on a thin agar on a full yeast medium YPD with the addition of 0,5 ml / l of 88% lactic acid solution, pH = 4,5. The value of the hydrogen index 4,5 was chosen as optimal for most of the studied yeast species.
Results: The largest growth suppression zones of Botrytis cinerea were given by Schwanniomyces occidentalis strains Y1-627, Y-1628, Y-1629, Y-1638, Y 1640, Y-1641, Metschnikowia pulcherrima Y-3698. Also small suppression zones were observed in Cyberlindnera mrakii Y-1211, Wickerhamomyces anomalus Y-201, Y-3836, Y-4562, Y-1182, Debaryomyces hansenii Y-1681 strains. During the test on the remaining strains, the effect of CT was not revealed.
Conclusions: In this study, it was found that killer yeasts from the collection of the BRC VKPM are effective against Botrytis cinerea F-1006, which gives the potential for their development and use as means of biocontrol.
About the Authors
Valeria A. ShagalovaRussian Federation
Mikhail M. Vustin
Russian Federation
Natalia G. Mashentseva
Russian Federation
References
1. Baeza, M. E., Sanhueza, M. A., & Cifuentes, V. H. (2008). Occurrence of killer yeast strains in industrial and clinical yeast isolates. Biological Research, 41(2), 173-182. https://doi.org/10.4067/S0716-97602008000200007
2. Banjara, N., Nickerson, K. W., Suhr, M. J., & Hallen-Adams, H. E. (2016). Killer toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts. International Journal of Food Microbiology, 222, 23-29. https://doi.org/10.1016/j.ijfoodmicro.2016.01.016
3. Becker, B., & Schmitt, M. J. (2017). Yeast killer toxin k28: Biology and unique strategy of host cell intoxication and killing. Toxins, 9(10), Article 333. https://doi.org/10.3390/toxins9100333
4. Belda, I., Ruiz, J., Alonso, A.,, Marquin, D., & Santos, A. (2017). The biology of Pichia membranifaciens killer toxins. Toxins, 9(4), Article 112. https://doi.org/10.3390/toxins9040112
5. Bi, K., Liang, Y., Mengiste, T., & Sharon, A. (2023). Killing softly: A roadmap of Botrytis cinerea pathogenicity. Trends in Plant Science, 28(2), 211-222. https://doi.org/10.1016/j.tplants.2022.08.024
6. Boynton, P. J. (2019). The ecology of killer yeasts: Interference competition in natural habitats. Yeast, 36(8), 473-485. https://doi.org/10.1002/yea.3398
7. Büyüksırıt, B. T., & Kuleaşan, H. (2021). A natural approach, the use of killer toxin produced by Metschnikowia pulcherrima in fresh ground beef patties for shelf life extention. International Journal of Food Microbiology, 345, Article 109154. https://doi.org/10.1016/j.ijfoodmicro.2021.109154
8. Büyüksırıt, B. T., & Kuleaşan, H. (2022). Purification and characterization of a Metschnikowia pulcherrima killer toxin with antagonistic activity against pathogenic microorganisms. Archives of Microbiology, 204(6), Article 337. https://doi.org/10.1007/s00203-022-02940-8
9. Cappelli, A., Ulissi, U., Valzano, M., Damiani, C., Epis, S., Gabrielli, M. G., Conti, S., Polonelli, L., Bandi, C., Favia, G., & Ricci, I. (2014). A Wickerhamomyces anomalus killer strain in the malaria vector Anopheles stephensi. PLoS One, 9(5), Article e95988. https://doi.org/10.1371/journal.pone.0095988
10. Carboni, G., Fancello, F., Zara, G., Zara, S., Ruiu, L., Marova, I., Pinna, G., Budroni, M., Mannazzu, I. (2020). Production of a lyophilized ready-to-use yeast killer toxin with possible applications in the wine and food industries. International Journal of Food Microbiology, 335, Article 108883. https://doi.org/10.1016/j.ijfoodmicro.2020.108883
11. Chen, P. H., & Chou, J. Y. (2017). Screening and identification of yeasts antagonistic to pathogenic fungi show a narrow optimal ph range for antagonistic activity. Polish Journal of Microbiology, 66(1), 101-106. https://doi.org/10.5604/17331331.1234997
12. Comitini, F., & Ciani, M. (2011). Kluyveromyces wickerhamii killer toxin: Purification and activity towards brettanomyces/dekkera yeasts in grape must. FEMS Microbiology Letters, 316(1), 77-82. https://doi.org/10.1111/j.1574-6968.2010.02194.x
13. Conti, S., Magliani, W., Gerloni, M., Salati, A., Dieci, E., Arseni, S., Fisicaro, P., & Polonelli, L. (1998). A transphyletic anti-infectious control strategy based on the killer phenomenon. FEMS Immunology & Medical Microbiology, 22(1-2), 151-161. https://doi.org/10.1111/j.1574-695x.1998.tb01200.x
14. De Lima, J. R., Gonçalves, L. R., Brandão, L. R., Rosa, C. A., & Viana, F. M. (2013). Isolation, identification, and activity in vitro of killer yeasts against Colletotrichum gloeosporioides isolated from tropical fruits. Journal of Basic Microbiology, 53(7), 590-599. https://doi.org/10.1002/jobm.201200049
15. De Ullivarri, F. M., Bulacios, G. A., Navarro, S. A., Lanza, L., Mendoza, L. M., & Chalón, M. C. (2020). The killer yeast Wickerhamomyces anomalus Cf20 exerts a broad anti-Candida activity through the production of killer toxins and volatile compounds. Medical Mycology, 258(8), 1102-1113. https://doi.org/10.1093/mmy/myaa011
16. Dlamini, N. R., & Dube, S. (2008). Studies on the physico-chemical, nutritional and microbiological changes during the traditional preparation of Marula wine in Gwanda, Zimbabwe. Nutrition & Food Science, 38(1), 61-69. https://doi.org/10.1108/00346650810848025
17. Farkas, Z., Márki-Zay, J., Kucsera, J., Vágvölgyi, C., Golubev, W. I., & Pfeiffer, I. (2012). Characterization of two different toxins of Wickerhamomyces anomalus (Pichia anomala) VKM Y-159. Acta Biologica Hungarica, 63(2), 277-287. https://doi.org/10.1556/abiol.63.2012.2.9
18. Freimoser, F. M., Rueda-Mejia, M. P., Tilocca, B., & Migheli, Q. (2019). Biocontrol yeasts: mechanisms and applications. World Journal of Microbiology and Biotechnology, 35(10), Article 154. https://doi.org/10.1007/s11274-019-2728-4
19. Giovati, L., Ciociola, T., De Simone, T., Conti, S., & Magliani, W. (2021). Wickerhamomyces yeast killer toxins' medical applications. Toxins, 13(9), Article 655. https://doi.org/10.3390/toxins13090655
20. Grzegorczyk, M., Żarowska, B., Restuccia, C., & Cirvilleri, G. (2017). Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit. Food Microbiology, 61, 93-101. https://doi.org/10.1016/j.fm.2016.09.005
21. Guyard, C., Evrard, P., Corbisier-Colson, A. M., Louvart, H., Dei-Cas, E., Menozzi, F. D., Polonelli, L., & Cailliez, J. (2001). Immuno-crossreactivity of an anti-Pichia anomala killer toxin monoclonal antibody with a Williopsis saturnus var. mrakii killer toxin. Medical Mycology, 39(5), 395-400. https://doi.org/10.1080/mmy.39.5.395.400
22. Hicks, R. H., Moreno-Beltrán, M., Gore-Lloyd, D., Chuck, C. J., & Henk, D. A. (2021). The oleaginous yeast Metschnikowia pulcherrima displays killer activity against avian-derived pathogenic bacteria. Biology, 10(12), Article 1227. https://doi.org/10.3390/biology10121227
23. Karabulut, G., & Cagri-Mehmetoglu, A. (2018). Antifungal, mechanical, and physical properties of edible film containing williopsis saturnus var. saturnus antagonistic yeast. Journal of Food Science, 83(3), 763-769. https://doi.org/10.1111/1750-3841.14062
24. Klassen, R., Schaffrath, R., Buzzini, P., & Ganter, P. F. (2017). Antagonistic interactions and killer yeasts. In P. Buzzini, M.-A. Lachance, A. Yurkov (Eds.). Yeasts in natural ecosystems: Ecology (pp. 229-275). Springer. https://doi.org/10.1007/978-3-319-61575-2_9
25. Liu, G. L., Chi, Z., Wang, G. Y., Wang, Z. P., Li, Y., & Chi, Z. M. (2015). Yeast killer toxins, molecular mechanisms of their action and their applications. Critical Reviews in Biotechnology, 35(2), 222-234. https://doi.org/10.3109/07388551.2013.833582
26. Maluleke, E., Jolly, N. P., Patterton, H. G., & Setati, M. E. (2022). Antifungal activity of non-conventional yeasts against Botrytis cinerea and non-Botrytis grape bunch rot fungi. Frontiers in Microbiology, 13, Article 986229. https://doi.org/10.3389/fmicb.2022.986229
27. Mannazzu, I., Domizio, P., Carboni, G., Zara, S., Zara, G., Comitini, F., Budroni, M., & Ciani, M. (2019). Yeast killer toxins: From ecological significance to application. Critical Reviews in Biotechnology, 39(5), 603-617. https://doi.org/10.1080/07388551.2019.1601679
28. Mazzucco, M. B., Ganga, M. A., & Sangorrín, M. P. (2019). Production of a novel killer toxin from Saccharomyces eubayanus using agro-industrial waste and its application against wine spoilage yeasts. Antonie Van Leeuwenhoek, 112(7), 965-973. https://doi.org/10.1007/s10482-019-01231-5
29. Mehlomakulu, N. N., Setati, M. E., & Divol, B. (2014). Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. International Journal of Food Microbiology, 188, 83-91. https://doi.org/10.1016/j.ijfoodmicro.2014.07.015
30. Muccilli, S., Wemhoff, S., Restuccia, C., & Meinhardt, F. (2013). Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Yeast, 30(1), 33-43. https://doi.org/10.1002/yea.2935
31. Ochigava, I., Collier, P. J., Walker, G. M., & Hakenbeck, R. (2011). Williopsis saturnus yeast killer toxin does not kill Streptococcus pneumoniae. Antonie van Leeuwenhoek, 99(3), 559-566. https://doi.org/10.1007/s10482-010-9524-3
32. Połomska, X., Neuvéglise, C., Zyzak, J., Żarowska, B., Casaregola, S., & Lazar, Z. (2021). New cytoplasmic virus-like elements (Vles) in the yeast Debaryomyces hansenii. Toxins, 13(9), Article 615. https://doi.org/10.3390/toxins13090615
33. Sanaa, M. A., Zeineb, M. H., Fatma, M. I., & Sanaa, S. Z. (2015). Killer toxins of Candida utilis 22 and Kluyveromyces marxianus and their potential applications as biocontrol agents. Egyptian Journal of Biological Pest Control, 25(2), 317-325.
34. Santos, A., & Marquina, D. (2011). The transcriptional response of Saccharomyces cerevisiae to proapoptotic concentrations of Pichia membranifaciens killer toxin. Fungal Genetics and Biology, 48(10), 979-989. https://doi.org/10.1016/j.fgb.2011.07.002
35. Santos, A., Marquina, D., Barroso, J., & Peinadom, J. M. (2002). Beta-D-glucan as the cell wall binding site for Debaryomyces hansenii killer toxin. Letters in Applied Microbiology, 34(2), 95-99. https://doi.org/10.1046/j.1472-765x.2002.01053.x
36. Santos, A., San Mauro, M., Abrusci, C., & Marquina, D. (2007). Cwp2p, the plasma membrane receptor for Pichia membranifaciens killer toxin. Molecular Microbiology, 64(3), 831-843. https://doi.org/10.1111/j.1365-2958.2007.05702.x
37. Sheppard, S., & Dikicioglu, D. (2019). Dynamic modelling of the killing mechanism of action by virus-infected yeasts. Journal of the Royal Society Interface, 16(152), Article 20190064. https://doi.org/10.1098/rsif.2019.0064
38. Steel, C. C., Blackman, J. W., Schmidtke L. M. (2013). Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. Journal of Agricultural and Food Chemistry, 61(22), 5189-5206. https://doi.org/10.1021/jf400641r
Review
For citations:
Shagalova V.A., Vustin M.M., Mashentseva N.G. Killer Toxins of Ascomycete Yeast Suppressing Phytopathogenic Fungi Botrytis cinerea. Storage and Processing of Farm Products. 2023;(2):146-162. (In Russ.) https://doi.org/10.36107/spfp.2023.440