Development of Algorithms for Increasing the Keeping Quality of Root Vegetables: Scoping Review
https://doi.org/10.36107/spfp.2023.462
Abstract
Background: Losses and reductions in the quality of crop products occur at the stages of production, transportation, storage, sales and depend on many factors: type and variety, degree of maturity, physiological, physicochemical, microbiological indicators, transportation and storage parameters. Despite the active work of scientists around the world, the number of studies remains limited that consider the problem of increasing the keeping quality of agricultural products as a complex one, when reducing losses and maintaining quality indicators involves the implementation of algorithms that ensure the keeping quality of crop products at all stages, from the selection of seed material to sales at trade and catering establishments.
Purpose: Analysis and systematization of research results devoted to increasing the shelf life of crop products, and on their basis, developing algorithms for increasing the shelf life of root vegetables using the example of red beets.
Materials and methods. The review included articles in Russian and English from the WoS, Scopus and RSCI databases, as well as the results of our previous studies. The review included articles published in Russian and English. The search was limited to the period from 2003 to 2022. The focus was on articles published in scientific journals that had undergone a peer review process to confirm their quality. In this case, articles must have a given citation index (cited in databases at least 50 times). Articles from thematic conferences were selected based on the number of their citations and, if found, using the following keywords: storage, sales, root crops, table beets, variety, shelf life, electromagnetic fields of extremely low frequencies, biological products. Generalization of results was used as a research method.
Results. During the study, tools for managing shelf life were identified: botanical variety, degree of maturity, biochemical composition, microbiological indicators, processing parameters, storage parameters (temperature, relative humidity, gas composition). In this case, treatment can be carried out with electromagnetic fields of extremely low frequencies (variable parameters: the magnitude of electromagnetic induction, frequency, treatment time) and biological products (variable parameters: type and dosage of the drug).
Conclusions. The conducted systematic review made it possible to create algorithms for increasing the shelf life of table beets for long-term and short-term storage, including such stages as selection of a variety with genetically determined shelf life, cultivation, harvesting, transportation, preparation for storage, and sale at wholesale and retail trade enterprises. The implementation of the developed algorithms can help reduce storage losses, stabilize quality characteristics and increase shelf life.
About the Authors
Grigory A. KupinRussian Federation
Tatiana V. Pershakova
Russian Federation
Vladimir N. Aleshin
Russian Federation
Elizaveta S. Semiryazhko
Russian Federation
Tatyana V. Yakovleva
Russian Federation
References
1. Алёшин, В.Н., Першакова, Т.В., Купин, Г.А., Горлов, С.М., Яцушко, Е.С., & Панасенко, Е.Ю. (2018). Свёкла столовая: Выращивание и хранение в условиях юга России. Методические рекомендации. Краснодар, Издательский Дом - Юг. https://elibrary.ru/item.asp?id=36268815
2. Глебова, С.Ю., Голуб, О.В. & Мотовилов, O.K. (2017). Использование свеклы столовой при производстве соусов для общественного питания. Пищевая промышленность, 10, 40-42. https://www.elibrary.ru/item.asp?id=30318136
3. Касьянов, Г.И., Кириченко, А.В., Лобанов, В.Г., Назарько, М.Д., & Романец, И.И. (2019). Электрофизические и биотехнологические подходы к хранению яблок органического сада. АгроФорум, 7, 30-35. https://elibrary.ru/item.asp?id=40640716
4. Купин, Г.А., Горлов, С.М., Першакова, Т.В., & Алёшин, В.Н. (2020a). Влияние комплексной обработки электромагнитными полями крайне низкой частоты и биопрепаратами на товарное качество корнеплодов моркови и свёклы столовой при хранении. Международный журнал гуманитарных и естественных наук, 3-1 (42), 208-211. https://doi.org/10.24411/2500-1000-2020-10239
5. Купин, Г.А., Першакова, Т.В., Лисовой, В.В., Михайлюта, Л.В., & Алёшин, В.Н. (2020b). Влияние обработки электромагнитными полями крайне низкой частоты и биопрепаратами на органолептические показатели качества корнеплодов моркови и свёклы столовой при хранении. Международный журнал гуманитарных и естественных наук, 4-2, 50-55. https://doi.org/10.24411/2500-1000-2020-10344
6. Купин, Г.А., Першакова, Т.В., Лисовой, В.В., Михайлюта, Л.В., & Алёшин, В.Н. (2020c). Исследование величины потерь корнеплодов моркови и свёклы столовой в зависимости от температуры хранения и способа предварительной обработки. Международный журнал гуманитарных и естественных наук, 3-1 (42), 203-207. https://doi.org/10.24411/2500-1000-2020-10238
7. Купин, Г.А., Лисовой, В.В., Першакова, Т.В., & Михайлюта, Л.В. (2020d). Разработка технологий краткосрочного хранения корнеплодных овощей. Технологии пищевой и перерабатывающей промышленности АПК – Продукты здорового питания, 2, 108-114. https://doi.org/10.24411/2311-6447-2020-10049
8. Лысоченко, A.A. (2015). Стратегическое управление в отраслях агропромышленного комплекса и природопользования. Journal of Economic Regulation, 4, 64-78. DOI: 10.17835/2078-5429.2015.6.4.064-078
9. Назарько, М.Д., Лобанов, В.Г., Касьянов, Г.И., Усатиков, С.В., Иночкина, Е.В., & Кириченко А.В. (2019). Разработка физико-биологических методов защиты для повышения сохранности и качества яблок. Известия ВУЗов. Пищевая технология, 5-6 (371-372), 53-57. DOI: 10.26297/0579-3009.2019.5-6.14
10. Панасенко, Е.Ю., Першакова, Т.В., Кудинов, П.И., & Купин, Г.А. (2019). Влияние обработки биопрепаратами и электромагнитным полем на биохимический состав корнеплодных овощей при хранении. Известия высших учебных заведений. Пищевая технология, 2-3, 75-78. https://doi.org/10.26297/0579-3009.2019.2-3.20
11. Першакова, Т.В., Купин, Г.А., Алёшин, В.Н., Горлов, С.М., Лисовой, В.В., Михайлюта, Л.В., Яцушко, Е.С., Панасенко, Е.Ю., & Бабакина, М.В. (2018). Выявить закономерности влияния предварительной обработки корнеплодов овощей электромагнитными полями и биопрепаратами на эффективность снижения микробной контаминации, снижение потерь, стабилизацию качества и максимальное сохранение биологически активных веществ в процессе хранения. Отчет о НИР (Министерство науки и высшего образования РФ). 144. https://www.elibrary.ru/item.asp?id=37524697
12. Akan, S., Horzum, Ö., & Ceren, A. (2022). The prevention of physicochemical and microbial quality losses in fresh-cut red beets using different packaging under cold storage conditions. LWT, 155, 112877, https://doi.org/10.1016/j.lwt.2021.112877
13. Alami, L., Terouzi, W., Otmani, M., Abdelkhalek, O., Salmaoui, S., & Mbarki, M. (2021). Effect of Sugar Beet Harvest Date on Its Technological Quality Parameters by Exploratory Analysis. Journal of Food Quality, 2021, 6639612. https://doi.org/10.1155/2021/6639612
14. Asgar, A. (2020). Effect of storage temperature and type of packaging on physical and chemical quality of carrot. IOP Conference Series: Earth and Environmental Science, 443, 012002. https://doi.org/10.1088/1755-1315/443/1/012002
15. Awasthi, R., Chattopadhyay, S., & Ghosh, S. (2019). Integration of solar charged PCM storage with VAR system for low capacity vegetable cold storage. Journal of Physics: Conference Series, 1240, 012070. https://doi.org/10.1088/1742-6596/1240/1/012070
16. Barba-Espin, G., Glied-Olsen, S., Dzhanfezova, T., Joernsgaard, B., Lütken, H., & Müller, R. (2018). Preharvest application of ethephon and postharvest UV-B radiation improve quality traits of beetroot (Beta vulgaris L. ssp. vulgaris) as source of colourant. BMC Plant Biology, 18, p. 316. https://doi.org/10.1186/s12870-018-1556-2
17. Barbosa, L.D.N., Carciofi, B.A.M., Dannenhauer, C.E., & Monteiro, A.R. (2011). Influence of temperature on the respiration rate of minimally processed organic carrots (Daucus carota L. cv. Brasília). Food Science and Technology, 31 (1), 78-85. https://doi.org/10.1590/S0101-20612011000100010
18. Bodbodak, S., & Moshfeghifar, M. (2016). Advances in controlled atmosphere storage of fruits and vegetables. In Eco-Friendly Technology for Postharvest Produce Quality, 39–76. https://doi.org/10.1016/b978-0-12-804313-4.00002-5
19. Carrillo, C., Wilches-Pérez, D., Hallmann, E., Kazimierczak, R., & Rembiałkowska, E. (2019). Organic versus conventional beetroot. Bioactive compounds and antioxidant properties. LWT, 116, 108552. https://doi.org/10.1016/j.lwt.2019.108552
20. Chakwizira, E., Ruiter, J.M., Maley, S., & Teixeira, E. (2016). Evaluating the critical nitrogen dilution curve for storage root crops. Field Crops Research, 199, 21-30. https://doi.org/10.1016/j.fcr.2016.09.012
21. Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., & Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chemistry, 272, 192-200. https://doi.org/10.1016/j.foodchem.2018.08.022
22. Choudhary, D.K., & Johri, B.N. (2009). Interactions of Bacillus spp. and plants – With special reference to induced systemic resistance (ISR). Microbiological Research, 164, 493-513. https://doi.org/10.1016/j.micres.2008.08.007
23. Cui, R., Fei, Y., & Zhu, Z. (2022). Physicochemical, structural and nutritional properties of steamed bread fortified with red beetroot powder and their changes during breadmaking process. Food Chemistry, 383, 132547. https://doi.org/10.1016/j.foodchem.2022.132547
24. Devgan, K., Kaur, P., Kumar, N., & Kaur, A. (2019). Physicochemical, microbial and sensory quality of fresh-cut red beetroots in relation to sanization method and storage duration. Journal of Food Science & Technology, 56 (2), 878-888. https://doi.org/10.14674/1120-1770/ijfs.v188
25. Dzakhmisheva, I., Tamakhina, A., & Akbasheva, A. (2021). Study of the influence of electromagnetic processing on the physiological state and duration of storage of tomato fruits. IOP Conference Series: Earth and Environmental Science, 640, 022054. https://doi.org/10.1088/1755-1315/640/2/022054
26. Edelenbos, M., Wold, A.-B., Wieczynska, J., & Luca, A. (2020). Roots: Beetroots. In Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce, 587-591. https://doi.org/10.1016/B978-0-12-804599-2.00054-5
27. Emond, J.-P. (2022). Managing product flow through postharvest systems. In Postharvest Handling (Fourth Edition). A Systems Approach, 363-375. https://doi.org/10.1016/B978-0-12-822845-6.00012-9
28. Eslami, A.S., Safaie, N., Mahmoudi, S.B., & Mojerlou, Sh. (2021). Sugar beet root rot loss: ANN and Regression models. European Journal of Agronomy, 131, 126392. https://doi.org/10.1016/j.eja.2021.126392
29. Filimonau, V., & Ermolaev, V.A. (2021). Mitigation of food loss and waste in primary production of a transition economy via stakeholder collaboration: A perspective of independent farmers in Russia. Sustainable Production and Consumption, 28, 359-370. https://doi.org/10.1016/j.spc.2021.06.002
30. Finch, H.J.S., Samuel, A.M., & Lane G.P.F. (2014). Root crops. In Lockhart & Wiseman’s Crop Husbandry Including Grassland (Ninth Edition). Woodhead Publishing Series in Food Science, Technology and Nutrition, 362-386. https://doi.org/10.1533/9781782423928.3.362
31. Fu, Y., Shi, J., Xie, S.-Y., Zhang, T.-Y., Soladoye, O.P., & Aluko, R.E. (2020). Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. Journal of Agricultural and Food Chemistry, 68, 11595-11611. https://doi.org/10.1021/acs.jafc.0c04241
32. Hadipour, E, Taleghani, A, Tayarani-Najaran, N, & Tayarani‐Najaran, Z. (2020). Biological effects of red beetroot and betalains: a review. Phytotherapy Research, 34, 1847-1867. https://doi.org/10.1186/s12906-016-1072-6
33. Heimler, D., Romani, A., & Ieri, F. (2017). Plant polyphenol content, soil fertilization and agricultural management: A review. European Food Research and Technology, 243 (7), 1107-1115. https://doi.org/10.1007/s00217-016-2826-6
34. Hoffmann, K., Leijdekkers, M., Ekelöf, J. & Vancutsem, F. (2018). Patterns for improved storability of sugar beet – importance of marc content and damage susceptibility of varieties in different environments. European Journal of Agronomy, 101, 30-37. https://doi.org/10.1016/j.eja.2018.08.004
35. Ibragimov, M., Rakhmatov, A., & Tadjibekova, I. (2020). Electrotechnological approach for effective storage of fruits and vegetables in farms. IOP Conference Series: Earth and Environmental Science, 614, 012020. https://doi.org/10.1088/1755-1315/614/1/012020
36. Jedermann, R., Nicometo, M., Uysal, I., & Lang, W. (2014). Reducing food losses by intelligent food logistics. Philosophical Transactions of the Royal Society A. 372, 20130302. https://doi.org/10.1098/rsta.2013.0302
37. Jiang, H., Zhang, W., Xu, Y., Zhang, Y., Pu, Y., Cao, J., & Jiang, W. (2021). Applications of plant-derived food by-products to maintain quality of postharvest fruits and vegetables. Trends in Food Science & Technology, 116, 1105-1119. https://doi.org/10.1016/j.tifs.2021.09.010
38. Kleuker, G., & Hoffmann, C. (2022). Causes of different tissue strength, changes during storage and effect on the storability of sugar beet genotypes. Postharvest Biology and Technology, 183, 111744. https://doi.org/10.1016/j.postharvbio.2021.111744
39. Kristoffersen, R., Hansen, A.L., Munk, L., Cedergreen, N., & Jørgensen, L.N. (2018). Management of beet rust in accordance with IPM principles. Crop Protection, 111, 6-16. https://doi.org/10.1016/j.cropro.2018.04.013
40. Lebrun, M., Bouček, J., Bímová, K.B., Kraus, K., Haisel, D., Kulhánek, M., Omara-Ojungu, C., Seyedsadr, S., Beesley, L., Soudek, P., Petrová, S., Pohořelý, M., & Trakal, L., (2022). Biochar in manure can suppress water stress of sugar beet (Beta vulgaris) and increase sucrose content in tubers. Science of The Total Environment, 814, 152772. https://doi.org/10.1016/j.scitotenv.2021.152772
41. Manohar, C.M., Kundgar, S.D., & Doble, M. (2017). Betanin immobilized LDPE as antimicrobial food wrapper. LWT, 80, 131-135. https://doi.org/10.1016/j.lwt.2016.07.020
42. Mikołajczyk-Bator, K. (2022). The significance of saponins in shaping the quality of food products from red beet. Acta Scientiarum Polonorum Technologia Alimentaria, 21 (1), 81-90. https://doi.org/10.17306/J.AFS.2022.1012
43. Natarajan, B., Kondhare, K., Hannapel, D. & Banerjee, A. (2019). Mobile RNAs and proteins: Prospects in storage organ development of tuber and root crops. Plant Science, 284, 73-81. https://doi.org/10.1016/j.plantsci.2019.03.019
44. Nazarko, M.D., Kasyanov, G.I., Zaporozhsky, A.A., & Kirichenko, A.V. (2021). Environmentally friendly technology for storing organically grown apples. IOP Conference Series: Earth and Environmental Science, 689, 012038. https://doi.org/10.1088/1755-1315/689/1/012038
45. Nirmal, N.P., Mereddy, R., & Maqsood, S. (2021). Recent developments in emerging technologies for beetroot pigment extraction and its food applications. Food Chemistry, 356, 129611. https://doi.org/10.1016/j.foodchem.2021.129611
46. Nunes, M.C.N., Emond, J.P., Rauth, M., Dea, S., & Chau, K.V. (2009). Environmental conditions encountered during typical consumer retail display affect fruit and vegetable quality and waste. Postharvest Biology and Technology, 51, 232-241. https://doi.org/10.1016/j.postharvbio.2008.07.016
47. Osipov, A., Shumaev, V., Ekielski, A., Gataullin, T., Suvorov, S., Mishurov, S., & Gataullin S. (2022). Identification and Classification of Mechanical Damage During Continuous Harvesting of Root Crops Using Computer Vision Methods. IEEE Access, 10, 28885-28894. https://doi.org/10.1109/ACCESS.2022.3157619
48. Park, S-Y., Lee, S.H., & Nam, J-S., (2021). Comparison of the Antioxidant Properties and Phenolic Compositions of Different Varieties of Beets (Beta vulgaris L.) Cultivated in Korea. Journal of the Korean Society of Food Science and Nutrition, 50(10), 1058-1064. https://doi.org/10.3746/jkfn.2021.50.10.1058
49. Pershakova, T.V., Gorlov, S.M., Lisovoy, V.V., Mikhaylyuta, L.V., Babakina, M.V., & Aleshin, V. N. (2021). Influence of electromagnetic fields and microbial pesticide Vitaplan on stability of apples during storage. IOP Conference Series: Earth and Environmental Science, 640, 022053. https://doi.org/10.1088/1755-1315/640/2/022053
50. Porat, R., Lichter, A., Terry, L.A., Harker, R., & Buzby, J. (2018). Postharvest losses of fruit and vegetables during retail and in consumers’ homes: Quantifications, causes, and means of prevention. Postharvest Biology and Technology, 139, 135-149. https://doi.org/10.1016/j.postharvbio.2017.11.019
51. Rama, M. V., & Narasimham, P. (2003). Controlled-atmosphere storage. In Effects on Fruit and Vegetables. Encyclopedia of Food Sciences and Nutrition, 1607–1615. doi:10.1016/b0-12-227055-x/00292-3
52. Ravichandran, K., Smetanska, I., & Antony, U. (2020). Red beet. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, 315-321. https://doi.org/10.1016/B978-0-12-812780-3.00019-2
53. Sawicki, T., Bączek, N., & Wiczkowski, W. (2016). Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. Journal of Functional Foods, 27, 249-261. https://doi.org/10.1016/j.jff.2016.09.004
54. Singla, M., Kumar, A., Kaur, P., & Goraya, R.K. (2020). Respiratory properties of fresh black carrot (Dacus carota L.) based upon non-linear enzyme kinetics approach. Journal of Food Science & Technology, 57, 3903-3912. https://doi.org/10.1007/s13197-020-04422-5
55. Sudhakar, N., Karthikeyan, G., RajhaViknesh, M., Saranya, A.S., & Shurya, R. (2020). Technological Advances in Agronomic Practices of Seed Processing, Storage, and Pest Management: An Update. In: Tiwari, A.K. (eds) Advances in Seed Production and Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-4198-8_17
56. Takács-Hájosa, M., & Vargas-Rubóczki, V. (2022). Evaluation of bioactive compounds in leaf and root of five beetroot varieties. Journal of Agriculture and Food Research, 7, 100280. https://doi.org/10.1016/j.jafr.2022.100280
57. Tang, X., Tan, C., Chen, A., Li, Z., & Shuai, R. (2020). Design and implementation of temperature and humidity monitoring system for small cold storage of fruit and vegetable based on Arduino. Journal of Physics: Conference Series, 1601, 062010. https://doi.org/10.1088/1742-6596/1601/6/062010
58. Tanumihardjo, S.A., Suri, D., Simon, P., & Goldman, I.L. (2016). Vegetables of Temperate Climates: Carrot, Parsnip, and Beetroot. In Encyclopedia of Food and Health, 387-392. https://doi.org/10.1016/B978-0-12-384947-2.00714-5
59. Yi, M.-R., Chang-Hee, K., & Bu, H.-J. (2017). Antioxidant and anti-inflammatory activity of extracts from red beet (Beta vulagaris) root. Korean JFood Preserv., 24(3), 413-420. DOI: https://doi.org/10.11002/kjfp.2017.24.3.413
60. Zavrazhnov, A., Zuglenok, N., Zavrazhnov, A., Tolstoshein, S., & Koltsov, S. (2020). Mathematical modeling of the temperature regime in a ventilated pile of sugar beet. IOP Conference Series: Materials Science and Engineering, 919, 062067. https://doi.org/10.1088/1757-899X/919/6/062067
Supplementary files
![]() |
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(160KB)
|
Indexing metadata ▾ |
Review
For citations:
Kupin G.A., Pershakova T.V., Aleshin V.N., Semiryazhko E.S., Yakovleva T.V. Development of Algorithms for Increasing the Keeping Quality of Root Vegetables: Scoping Review. Storage and Processing of Farm Products. 2023;(3). (In Russ.) https://doi.org/10.36107/spfp.2023.462