Влияние тяжелых металлов на перспективы использования личинок Hermetia illucens для переработки отходов
https://doi.org/10.36107/spfp.2023.4.464
Аннотация
Введение: Насекомые считаются многообещающим альтернативным источником белка для животных. Их можно выращивать на органических отходах, что одновременно позволяет снизить затраты на утилизацию и повторно использовать побочные продукты сельского хозяйства. Однако, дальнейшее использование полученной биомассы может быть небезопасно, т.к. насекомые способны аккумулировать тяжелые металлы и передавать их дальше по пищевой цепи. Более того, тяжелые металлы также влияют на скорость роста и микробиом личинок.
Цель: Целью данной работы является анализ современных представлений о влиянии аккумуляции тяжелых металлов в личинках мухи Черная львинка на потенциал применения данного вида насекомых для переработки отходов с дальнейшим использованием в качестве кормовой добавки.
Материалы и методы: Поиск информации осуществлялся в базах PubMed и ScienceDirect, по ключевым словам: «black soldier fly heavy metals», «black soldier fly heavy metals bioaccumulation», «Hermetia illucens heavy metals», «Hermetia illucens heavy metals bioaccumulation». Принимались во внимание работы, опубликованные с 2000 по 2023 годы. В результате в основу данного обзора вошли 54 источника на английском языке.
Результаты: Основными факторами, определяющими влияние тяжелых металлов на применение личинок Черной львинки, полученных при переработке органических отходов, в качестве кормовых добавок, являются: способность биоаккумуляции тяжелых металлов насекомыми, содержание металлов в кормовом субстрате, стадия развития Черной львинки, способы переработки личинок перед использованием в качестве кормовых добавок, а также способность животных, употребляющих в пищу Черную львинку, накапливать тяжелые металлы. В большинстве рассмотренных работ объектами исследования являлись такие элементы, как Cd, Cu, Fe, Hg, Pb, Zn, что является оправданным и необходимым в случае производства кормов по причине токсичности перечисленных металлов. Однако, в случае использования личинок мухи Черная львинка для очистки донных отложений и переработки отходов следует также уделять внимание остальным тяжелым металлам.
Выводы: К способам, снижающим содержание исследуемых элементов в данном виде насекомых, можно отнести: использование «чистого» кормового субстрата, разбавление отходов «чистым» кормовым субстратом, очистка при дальнейшей переработке биомассы личинок в корм. Исследования показывают, что целесообразным с точки зрения уменьшения дальнейшей передачи по пищевой цепочке тяжелых металлов является использование черной львинки в качестве кормовой добавки, а не самостоятельного корма.
Об авторах
Анатолий Анатольевич МещеряковРоссия
кандидат химических наук, младший научный сотрудник
Вениамин Юрьевич Ситнов
Россия
директор
Дмитрий Сергеевич Рябухин
Россия
кандидат химических наук, заведующий лабораторией
Список литературы
1. Afazeli, H., Jafari, A., Rafiee, S. & Nosrati, M. (2014). An investigation of biogas production potential from livestock and slaughterhouse wastes. Renewable and Sustainable Energy Reviews, 34, 380–386. https://doi.org/10.1016/j.rser.2014.03.016
2. Aguilar-Ascón, E., Pariona-Velarde, D., Loayza-Muro, R. & Albrecht-Ruíz, M. (2023). Use of the sludge obtained from the electrocoagulation process of pumping waters of fishmeal factories for feeding Tenebrio molitor larvae. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e16200
3. Attiogbe, F. K., Ayim, N. Y. K. & Martey, J. (2019). Effectiveness of black soldier fly larvae in composting mercury contaminated organic waste. Scientific African, 6. https://doi.org/10.1016/j.sciaf.2019.e00205
4. Awasthi, S. K., Kumar, M., Sarsaiya, S., Ahluwalia, V., Chen, H., Kaur, G., … Awasthi, M. K. (2022). Multi-criteria research lines on livestock manure biorefinery development towards a circular economy: From the perspective of a life cycle assessment and business models strategies. Journal of Cleaner Production, 341, 130862. https://doi.org/10.1016/j.jclepro.2022.130862
5. Bessa, L. W., Pieterse, E., Marais, J., Dhanani, K. & Hoffman, L. C. (2021). Food Safety of Consuming Black Soldier Fly (Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks. Foods, 10(8), 1934. https://doi.org/10.3390/foods10081934
6. Biancarosa, I., Liland, N. S., Biemans, D., Araujo, P., Bruckner, C. G., Waagbø, R., … Amlund, H. (2018). Uptake of heavy metals and arsenic in black soldier fly ( Hermetia illucens ) larvae grown on seaweed-enriched media. Journal of the Science of Food and Agriculture, 98(6), 2176–2183. https://doi.org/10.1002/jsfa.8702
7. Bohm, K., Hatley, G. A., Robinson, B. H. & Gutiérrez-Ginés, M. J. (2022). Black Soldier Fly-based bioconversion of biosolids creates high-value products with low heavy metal concentrations. Resources, Conservation and Recycling, 180. https://doi.org/10.1016/j.resconrec.2021.106149
8. Cai, M., Hu, R., Zhang, K., Ma, S., Zheng, L., Yu, Z. & Zhang, J. (2018). Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment. Environmental Science and Pollution Research, 25(2), 1559–1567. https://doi.org/10.1007/s11356-017-0541-x
9. Chiam, Z., Lee, J. T. E., Tan, J. K. N., Song, S., Arora, S., Tong, Y. W., & Tan, H. T. W. (2021). Evaluating the potential of okara-derived black soldier fly larval frass as a soil amendment. Journal of Environmental Management, 286(January), 112163. https://doi.org/10.1016/j.jenvman.2021.112163
10. Diener, S., Zurbrügg, C. & Tockner, K. (2015). Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. Journal of Insects as Food and Feed, 1(4), 261–270. https://doi.org/10.3920/JIFF2015.0030
11. DiGiacomo, K. & Leury, B. J. (2019). Review: Insect meal: a future source of protein feed for pigs? Animal, 13(12), 3022–3030. https://doi.org/10.1017/S1751731119001873
12. English, G., Wanger, G. & Colombo, S. M. (2021). A review of advancements in black soldier fly (Hermetia illucens) production for dietary inclusion in salmonid feeds. Journal of Agriculture and Food Research, 5, 100164. https://doi.org/10.1016/j.jafr.2021.100164
13. Ferrari, L., Cattaneo, D. M. I. R., Abbate, R., Manoni, M., Ottoboni, M., Luciano, A., … Pinotti, L. (2023). Advances in selenium supplementation: From selenium-enriched yeast to potential selenium-enriched insects, and selenium nanoparticles. Animal Nutrition, 14, 193–203. https://doi.org/10.1016/j.aninu.2023.05.002
14. Fertier, A., Montarnal, A., Truptil, S. & Bénaben, F. (2020). Jo ur na l P re Jo ur l P re. Decision Support Systems, (January), 113260. https://doi.org/10.1016/j.aninu.2023.05.002
15. Fischer, H., Romano, N., Renukdas, N., Kumar, V. & Sinha, A. K. (2021). Comparing black soldier fly (Hermetia illucens) larvae versus prepupae in the diets of largemouth bass, Micropterus salmoides: Effects on their growth, biochemical composition, histopathology, and gene expression. Aquaculture, 546, 737323. https://doi.org/10.1016/j.aquaculture.2021.737323
16. Gao, Q., Wang, X., Wang, W., Lei, C. & Zhu, F. (2017). Influences of chromium and cadmium on the development of black soldier fly larvae. Environmental Science and Pollution Research, 24(9), 8637–8644. https://doi.org/10.1007/s11356-017-8550-3
17. Gariglio, M., Dabbou, S., Gai, F., Trocino, A., Xiccato, G., Holodova, M., … Schiavone, A. (2021). Black soldier fly larva in Muscovy duck diets: effects on duck growth, carcass property, and meat quality. Poultry Science, 100(9), 101303. https://doi.org/10.1016/j.psj.2021.101303
18. Girotto, F. & Cossu, R. (2019). Role of animals in waste management with a focus on invertebrates’ biorefinery: An overview. Environmental Development, 32(March), 100454. https://doi.org/10.1016/j.envdev.2019.08.001
19. Gligorescu, A., Macavei, L. I., Larsen, B. F., Markfoged, R., Fischer, C. H., Koch, J. D., … Maistrello, L. (2022). Pilot scale production of Hermetia illucens (L.) larvae and frass using former foodstuffs. Cleaner Engineering and Technology, 10(August), 1–9. https://doi.org/10.1016/j.clet.2022.100546
20. Gold, M., Tomberlin, J. K., Diener, S., Zurbrügg, C. & Mathys, A. (2018). Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Management, 82, 302–318. https://doi.org/10.1016/j.wasman.2018.10.022
21. Görür, G. (2006). Developmental instability in cabbage aphid (Brevicoryne brassicae) populations exposed to heavy metal accumulated host plants. Ecological Indicators, 6(4), 743–748. https://doi.org/10.1016/j.ecolind.2005.09.001
22. Hu, C., Yang, L., Wang, H., Xiao, X., Wang, Z., Gong, X., … Li, W. (2023). Analysis of heavy metals in the conversion of lake sediment and restaurant waste by black soldier fly (Hermetia illucens). Frontiers in Bioengineering and Biotechnology, 11(March), 1–11. https://doi.org/10.3389/fbioe.2023.1163057
23. Huang, S., Zheng, X., Luo, L., Ni, Y., Yao, L. & Ni, W. (2021). Biostimulants in bioconversion compost of organic waste: A novel booster in sustainable agriculture. Journal of Cleaner Production, 319(August), 128704. https://doi.org/10.1016/j.jclepro.2021.128704
24. Imathiu, S. (2020). Benefits and food safety concerns associated with consumption of edible insects. NFS Journal, 18(August 2019), 1–11. https://doi.org/10.1016/j.nfs.2019.11.002
25. Lagisz, M. & Laskowski, R. (2008). Evidence for between-generation effects in carabids exposed to heavy metals pollution. Ecotoxicology, 17(1), 59–66. https://doi.org/10.1007/s10646-007-0176-7
26. Lange, K. W. & Nakamura, Y. (2021). Edible insects as future food: chances and challenges. Journal of Future Foods, 1(1), 38–46. https://doi.org/10.1016/j.jfutfo.2021.10.001
27. Li, Yan-xia, Xiong, X., Chun-ye, L., Feng-song, Z., Wei, L. & Wei, H. (2010). Cadmium in animal production and its potential hazard on Beijing and Fuxin farmlands. Journal of Hazardous Materials, 177(1–3), 475–480. https://doi.org/10.1016/j.jhazmat.2009.12.057
28. Li, Yanxian, Kortner, T. M., Chikwati, E. M., Munang’andu, H. M., Lock, E. J. & Krogdahl, Å. (2019). Gut health and vaccination response in pre-smolt Atlantic salmon (Salmo salar) fed black soldier fly (Hermetia illucens) larvae meal. Fish and Shellfish Immunology, 86(November 2018), 1106–1113. https://doi.org/10.1016/j.fsi.2018.12.057
29. Liew, C. S., Yunus, N. M., Chidi, B. S., Lam, M. K., Goh, P. S., Mohamad, M., … Lam, S. S. (2022). A review on recent disposal of hazardous sewage sludge via anaerobic digestion and novel composting. Journal of Hazardous Materials, 423(PA), 126995. https://doi.org/10.1016/j.jhazmat.2021.126995
30. Liu, T., Awasthi, M. K., Awasthi, S. K., Zhang, Y. & Zhang, Z. (2020). Impact of the addition of black soldier fly larvae on humification and speciation of trace elements during manure composting. Industrial Crops and Products, 154(June), 112657. https://doi.org/10.1016/j.indcrop.2020.112657
31. Malematja, E., Manyelo, T. G., Sebola, N. A., Kolobe, S. D. & Mabelebele, M. (2023). The accumulation of heavy metals in feeder insects and their impact on animal production. The Science of the Total Environment, 885(December 2022), 163716. https://doi.org/10.1016/j.scitotenv.2023.163716
32. Miranda, C. D., Crippen, T. L., Cammack, J. A. & Tomberlin, J. K. (2021). Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), and house fly, Musca domestica L. (Diptera: Muscidae), larvae reduce livestock manure and possibly associated nutrients: An assessment at two scales. Environmental Pollution, 282, 116976. https://doi.org/10.1016/j.envpol.2021.116976
33. Montevecchi, G., Licciardello, F., Masino, F., Miron, L. T. & Antonelli, A. (2021). Fortification of wheat flour with black soldier fly prepupae. Evaluation of technological and nutritional parameters of the intermediate doughs and final baked products. Innovative Food Science and Emerging Technologies, 69(March), 102666. https://doi.org/10.1016/j.ifset.2021.102666
34. Moral, R., Perez-Murcia, M. D., Perez-Espinosa, A., Moreno-Caselles, J., Paredes, C. & Rufete, B. (2008). Salinity, organic content, micronutrients and heavy metals in pig slurries from South-eastern Spain. Waste Management, 28(2), 367–371. https://doi.org/10.1016/j.wasman.2007.01.009
35. Moroń, D., Szentgyörgyi, H., Skórka, P., Potts, S. G. & Woyciechowski, M. (2014). Survival, reproduction and population growth of the bee pollinator, Osmia rufa (Hymenoptera: Megachilidae), along gradients of heavy metal pollution. Insect Conservation and Diversity, 7(2), 113–121. https://doi.org/10.1111/icad.12040
36. Pleissner, D. & Rumpold, B. A. (2018). Utilization of organic residues using heterotrophic microalgae and insects. Waste Management, 72, 227–239. https://doi.org/10.1016/j.wasman.2017.11.020
37. Proc, K., Bulak, P., Wiącek, D. & Bieganowski, A. (2020). Hermetia illucens exhibits bioaccumulative potential for 15 different elements – Implications for feed and food production. Science of the Total Environment, 723. https://doi.org/10.1016/j.scitotenv.2020.138125
38. Queiroz, L. S., Regnard, M., Jessen, F., Mohammadifar, M. A., Sloth, J. J., Petersen, H. O., … Casanova, F. (2021). Physico-chemical and colloidal properties of protein extracted from black soldier fly (Hermetia illucens) larvae. International Journal of Biological Macromolecules, 186(June), 714–723. https://doi.org/10.1016/j.ijbiomac.2021.07.081
39. Raheem, D., Raposo, A., Oluwole, O. B., Nieuwland, M., Saraiva, A. & Carrascosa, C. (2019). Entomophagy: Nutritional, ecological, safety and legislation aspects. Food Research International, 126, 108672. https://doi.org/10.1016/j.foodres.2019.108672
40. Raksasat, R., Lim, J. W., Kiatkittipong, W., Kiatkittipong, K., Ho, Y. C., Lam, M. K., … Cheng, C. K. (2020). A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources. Environmental Pollution, 267, 115488. https://doi.org/10.1016/j.envpol.2020.115488
41. Romano, N., Datta, S. N., Pande, G. S. J., Sinha, A. K., Yamamoto, F. Y., Beck, B. H. & Webster, C. D. (2023). Dietary inclusions of black soldier fly (Hermetia illucens) larvae frass enhanced production of channel catfish (Ictalurus punctatus) juveniles, stevia (Stevia rebaudiana), and lavender (Lavaridula angustifolia) in an aquaponic system. Aquaculture, 575(June), 739742. https://doi.org/10.1016/j.aquaculture.2023.739742
42. Salam, M., Alam, F., Dezhi, S., Nabi, G., Shahzadi, A., Hassan, S. U., … Bilal, M. (2021). Exploring the role of Black Soldier Fly Larva technology for sustainable management of municipal solid waste in developing countries. Environmental Technology and Innovation, 24, 101934. https://doi.org/10.1016/j.eti.2021.101934
43. Sampathkumar, K., Yu, H. & Loo, S. C. J. (2023). Valorisation of industrial food waste into sustainable aquaculture feeds. Future Foods, 7(June), 100240. https://doi.org/10.1016/j.fufo.2023.100240
44. Schiavone, A., Dabbou, S., Petracci, M., Zampiga, M., Sirri, F., Biasato, I., … Gasco, L. (2019). Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on carcass traits, breast meat quality and safety. Animal, 13(10), 2397–2405. https://doi.org/10.1017/S1751731119000685
45. Schrögel, P. & Wätjen, W. (2019). Insects for Food and Feed-Safety Aspects Related to Mycotoxins and Metals. Foods, 8(8), 288. https://doi.org/10.3390/foods8080288
46. Somroo, A. A., ur Rehman, K., Zheng, L., Cai, M., Xiao, X., Hu, S., … Zhang, J. (2019). Influence of Lactobacillus buchneri on soybean curd residue co-conversion by black soldier fly larvae (Hermetia illucens) for food and feedstock production. Waste Management, 86, 114–122. https://doi.org/10.1016/j.wasman.2019.01.022
47. Song, S., Ee, A. W. L., Tan, J. K. N., Cheong, J. C., Chiam, Z., Arora, S., … Tan, H. T. W. (2021). Upcycling food waste using black soldier fly larvae: Effects of further composting on frass quality, fertilising effect and its global warming potential. Journal of Cleaner Production, 288, 125664. https://doi.org/10.1016/j.jclepro.2020.125664
48. Tan, J. K. N., Lee, J. T. E., Chiam, Z., Song, S., Arora, S., Tong, Y. W. & Tan, H. T. W. (2021). Applications of food waste-derived black soldier fly larval frass as incorporated compost, side-dress fertilizer and frass-tea drench for soilless cultivation of leafy vegetables in biochar-based growing media. Waste Management, 130, 155–166. https://doi.org/10.1016/j.wasman.2021.05.025
49. van Huis, A., Oonincx, D. G. A. B., Rojo, S. & Tomberlin, J. K. (2020). Insects as feed: house fly or black soldier fly? Journal of Insects as Food and Feed, 6(3), 221–229. https://doi.org/10.3920/JIFF2020.x003
50. Wang, H., Dong, Y. & Wang, H. (2014). Hazardous metals in animal manure and their changes from 1990 to 2010 in China. Toxicological & Environmental Chemistry, 96(9), 1346–1355. https://doi.org/10.1080/02772248.2015.1023305
51. Wang, H., Dong, Y., Yang, Y., Toor, G. S. & Zhang, X. (2013). Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. Journal of Environmental Sciences, 25(12), 2435–2442. https://doi.org/10.1016/S1001-0742(13)60473-8
52. WANG, X. bo, WU, N., CAI, R. jie, GENG, W. na & XU, X. yan. (2021). Changes in speciation, mobility and bioavailability of Cd, Cr and As during the transformation process of pig manure by black soldier fly larvae (Hermetia illucens). Journal of Integrative Agriculture, 20(5), 1157–1166. https://doi.org/10.1016/S2095-3119(20)63333-0
53. Wu, N., Wang, X., Xu, X., Cai, R. & Xie, S. (2020). Effects of heavy metals on the bioaccumulation, excretion and gut microbiome of black soldier fly larvae (Hermetia illucens). Ecotoxicology and Environmental Safety, 192(February), 110323. https://doi.org/10.1016/j.ecoenv.2020.110323
54. Wu, N., Wang, X., Yan, Z., Xu, X., Xie, S. & Liang, J. (2021). Transformation of pig manure by passage through the gut of black soldier fly larvae (Hermetia illucens): Metal speciation, potential pathogens and metal-related functional profiling. Ecotoxicology and Environmental Safety, 211(January), 111925. https://doi.org/10.1016/j.ecoenv.2021.111925
55. Wynants, E., Frooninckx, L., Crauwels, S., Verreth, C., De Smet, J., Sandrock, C., … Van Campenhout, L. (2019). Assessing the Microbiota of Black Soldier Fly Larvae (Hermetia illucens) Reared on Organic Waste Streams on Four Different Locations at Laboratory and Large Scale. Microbial Ecology, 77(4), 913–930. https://doi.org/10.1007/s00248-018-1286-x
56. Xu, H., Hong, C., Yao, Y., Liu, L., Wang, W., Zhu, W., … Zhu, F. (2021). The process of biotransformation can produce insect protein and promote the effective inactivation of heavy metals. Science of the Total Environment, 776, 145864. https://doi.org/10.1016/j.scitotenv.2021.145864
57. Yuvaraj, A., Thangaraj, R., Karmegam, N., Ravindran, B., Chang, S. W., Awasthi, M. K. & Kannan, S. (2021). Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: A viable resource recovery option for heavy metal contaminated soils and water. Chemosphere, 278, 130458. https://doi.org/10.1016/j.chemosphere.2021.130458
58. Zhang, J., Shi, Z., Gao, Z., Wen, Y., Wang, W., Liu, W., … Zhu, F. (2021). Identification of three metallothioneins in the black soldier fly and their functions in Cd accumulation and detoxification. Environmental Pollution, 286. https://doi.org/10.1016/j.envpol.2021.117146
59. Zhu, Y.-G., Johnson, T. A., Su, J.-Q., Qiao, M., Guo, G.-X., Stedtfeld, R. D., … Tiedje, J. M. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 110(9), 3435–3440. https://doi.org/10.1073/pnas.1222743110
60. Zlaugotne, B., Pubule, J. & Blumberga, D. (2022). Advantages and disadvantages of using more sustainable ingredients in fish feed. Heliyon, 8(9), e10527. https://doi.org/10.1016/j.heliyon.2022.e10527
Дополнительные файлы
Рецензия
Для цитирования:
Мещеряков А.А., Ситнов В.Ю., Рябухин Д.С. Влияние тяжелых металлов на перспективы использования личинок Hermetia illucens для переработки отходов. Хранение и переработка сельхозсырья. 2023;(4). https://doi.org/10.36107/spfp.2023.4.464
For citation:
Meshcheriakov A.A., Sitnov V.Yu., Ryabukhin D.S. The Impact of Heavy Metals on the Prospects of Using Hermetia illucens Larvae for Waste Processing: A Scoping Review. Storage and Processing of Farm Products. 2023;(4). (In Russ.) https://doi.org/10.36107/spfp.2023.4.464