Rhizobacteria for Reducing Biotic Stress in Spring Wheat (Triticum aestivum L.) Caused by Phytopathogenic Fungi
https://doi.org/10.36107/spfp.2023.4.515
Abstract
Introduction: Wheat is an important agricultural crop. Its yield largely depends on the phytopathogenic load of soils and seed material. In the difficult climatic conditions of Kuzbass, the search for biological means of protecting wheat is relevant to ensure food security in the region.
Purpose: of the study is to evaluate the growth stimulating properties and antagonistic activity of bacterial isolates of the wheat rhizosphere, and to select promising options for the creation of commercial biofungicidal preparations.
Materials and Methods: To isolate promising strains of rhizobacteria, we used sequential cultivation of the wheat rhizosphere on a nitrogen-free nutrient medium, on a medium with a sparingly soluble phosphorus compound, and on a medium with a low content of nutrients. To select representative isolates, the seed germination index was examined; ability to fix nitrogen and solubilize phosphorus. For isolates characterized by high activity, the ability to synthesize phytohormones was studied using the spectrophotometric method and antagonistic activity against phytopathogens using the agar block method. Identification of promising rhizobacteria was carried out based on biochemical characteristics. The study of the effect of bacterial isolates on the growth and development of wheat under biotic stress conditions was carried out according to generally accepted methods.
Results: : During the study, 17 isolates were isolated, 2 of which were characterized by maximum activity in terms of growth-stimulating and antagonistic indicators. Biochemical identification showed that they were Bacillus velezensis and Pantoea ananatis. Bacillus velezensis is characterized by the following growth-stimulating properties: nitrogen fixation (850 μg/ml), phosphorus solubilization (1.60 cm), germination index (1.26), synthesis of indolyl-3-acetic acid (8.16 mg/ml), gibberellic acid (366.90 µg/ml) and kinetin (11.86 µg/ml). The Pantoea ananatis strain exhibited the following growth-stimulating properties: nitrogen fixation (80 μg/ml), phosphorus solubilization (2.00 cm), germination index (1.19), synthesis of indolyl-3-acetic acid (9.00 mg/ml), gibberellic acid acid (346.20 µg/ml) and kinetin (6.28 µg/ml). The strains had high antagonistic activity against the phytopathogenic fungi Fusarium graminearum F-877, Botrytis cinerea F-1006, Bipolaris sorokiniana F-529. Testing of the strains on wheat seeds infected with phytopathogens showed that they successfully reduce plant biotic stress.
Conclusions: The further use of strains as biological control agents for the development of complex preparations aimed at improving wheat nutrition is promising.
About the Authors
Yuliya Renatovna SerazetdinovaRussian Federation
Natalya Vyacheslavovna Fotina
Russian Federation
Lyudmila Konstantinovna Asyakina
Russian Federation
Irina Sergeevna Milentyeva
Russian Federation
Alexander Yurievich Prosekov
Russian Federation
References
1. Kulyasov, P. A., Khalgaeva, K. E. (2020). Okrashivaniya usovershenstvovannym metodom po Gans Kristianu Gramu dlya identifikatsii zhivogo biologicheskogo vozbuditelya rakovogo novoobrazovaniya molochnoy zhelezy koshki [Enhanced coloration by Hans Christian Gram to identify the living biological pathogen of cat breast cancer]. Vestnik Kurskoy gosudarstvennoy selʹskokhozyaystvennoy akademii [Bulletin of the Kursk State Agricultural Academy], 3, 28–34.
2. Plotnikov, S. E., Latkova, E. V. (2020). Perspektivy ehffektivnosti vozdelyvaniya yarovoy pshenitsy (na primere Kuzbassa) [Prospects for efficiency of spring wheat production (using the example of Kuzbass)]. Innovatsionnaya nauka [Innovative Science], (4), 79–81.
3. Rzhevskaya, V. S., Semenova, E. F., Zaytsev, G. P., Slastʹya, E. A., Omelʹchenko, A. V., Bugara, I. A., Teplitskaya, L. M., Tsokalo, I. E. (2021). Antagonisticheskoe deystvie molochnokislykh bakteriy i ikh konsortsiuma s drozhzhami na patogennye mikroorganizmy [Antagonistic effects of lactic acid bacteria and their yeast consortium on pathogens]. Biotekhnologiya [Biotechnology], 37(5), 96–107. https://doi.org/10.21519/0234-2758-2021-37-5-96-107
4. Faskhutdinova, E. R., Golubtsova, Yu. V., Neverova, O. A., Larichev, T. A., Khoroshkina, N. N. (2023). Perspektivy ispolʹzovaniya ehndofitnykh i ehkstremofilʹnykh mikroorganizmov v borʹbe s fitopatogenami selʹskokhozyaystvennykh kulʹtur (obzor) [Prospects for the use of endophytic and extreme micro-organisms in the control of plant pathogens in crops (review)]. Agrarnaya nauka Evro-Severo-Vostoka [An Agrarian Science of Euro-North-East], 24(5), 720–738. https://doi.org/10.30766/2072-9081.2023.24.5.720-738
5. Tsugkiev, B. G., Mkrtychan, M. V. (2013). Morfologicheskie i kulʹturalʹnye svoystva mikroorganizmov, vydelennykh iz pishchevaritelʹnogo trakta c «Morfologicheskie i kulʹturalʹnye svoystva mikroorganizmov, vydelennykh iz pishchevaritelʹnogo trakta» dikikh zhivotnykh [Morphological and cultural properties of microorganisms isolated from the digestive tract c «Morphological and cultural properties of microorganisms isolated from the digestive tract» wild animals]. Izvestiya Gorskogo gosudarstvennogo agrarnogo universiteta [News of the Gorsky employee of the Agrarian University], 50(3), 270–273.
6. Abdenaceur, R., Farida, B. T., Mourad, D., Rima, H., Zahia, O., Fatma, S. H. (2022). Effective biofertilizer Trichoderma spp. isolates with enzymatic activity and metabolites enhancing plant growth. International Microbiology, 25(4), 817–829. https://doi.org/10.1007/s10123-022-00263-8
7. Asyakina, L. K., Serazetdinova, Yu. R., Frolova, A. S., Fotina, N. V., Neverova, O. A., & Petrov, A. N. (2023). Antagonistic activity of extremophilic bacteria against phytopathogens in agricultural crops. Food Processing: Techniques and Technology, 53(3), 565–575. https://doi.org/10.21603/2074-9414-2023-3-2457
8. Asyakina, L. K., Vorob'eva, E. E., Proskuryakova, L. A., Zharko, M. Yu. (2023). Evaluating extremophilic microorganisms in industrial regions. Foods and Raw Materials, 11(1), 162–171. https://doi.org/10.21603/2308-4057-2023-1-556
9. Azizi, M. M. F., Zulperi, D., Rahman, M. A. A., Abdul-Basir, B., Othman, N. A., Ismail, S. I., Hata, E. M., Ina-Salwany, M. Y., & Abdullah, M. A. F. (2019). First report of Pantoea ananatis causing leaf blight disease of rice in peninsular Malaysia. Plant Disease, 103, Article 2122. https://doi.org/10.1094/PDIS-01-19-0191-PDN
10. Batool, S., & Iqbal, A. (2019). Phosphate solubilizing rhizobacteria as alternative of chemical fertilizer for growth and yield of Triticum aestivum (Var. Galaxy 2013). Saudi J Biol Sci. 26, 1400–1410. https://doi.org/10.1016/j.sjbs.2018.05.024
11. Belkebla, N., Bessai, S. A., Melo, J., Caeiro, M. F., Cruz, C., & Nabti, E.-h. (2022). Restoration of Triticum aestivum growth under salt stress by phosphate-solubilizing bacterium isolated from Southern Algeria. Agronomy, 12(9), Article 2050. https://doi.org/10.3390/agronomy12092050
12. Brauer, V. S., Rezende, C. P., Pessoni, A. M., De Paula, R. G., Rangappa, K. S., Nayaka, S. C., Gupta, V. K., & Almeida, F. (2019). Antifungal agents in agriculture: Friends and foes of public health. Biomolecules, 9, Article 521. https://doi.org/10.3390/biom9100521
13. Carcea, M. (2020). Nutritional value of grain-based foods. Foods, 9(4), Article 504. https://doi.org/10.3390/foods9040504
14. Chen, L., Heng, J., Qin, S., & Bian, K. (2018). A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS One, 13, Article e0198560. https://doi.org/10.1371/journal.pone.0198560
15. Cordova-Rodriguez, A., Rentería-Martínez, M. E., López-Miranda, C. A., Guzmán-Ortíz, J. M., & Moreno-Salazar, S. F. (2022). Simple and sensitive spectrophotometric method for estimating the nitrogen-fixing capacity of bacterial cultures. MethodsX, 9, Article 101917. https://doi.org/10.1016/j.mex.2022.101917
16. Dinesh, R., Srinivasan, V., Praveena, R., Subila, K. P., George, P., Das, A., Shajina, O., Anees, K., Leela, N. K., & Haritha, P. (2022). Exploring the potential of P solubilizing rhizobacteria for enhanced yield and quality in turmeric (Curcuma longa L.). Industrial Crops and Products, 189, Article 115826. https://doi.org/10.1016/j.indcrop.2022.115826
17. El-Gremi, S. M., Draz, I. S., & Youssef, W. A.-E. (2017). Biological control of pathogens associated with kernel black point disease of wheat. Crop Protection, 91, 13–19. https://doi.org/10.1016/j.cropro.2016.08.034
18. Fazle, R. M., & Baek, K.-H. (2020). Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications. Molecules, 25, Article 4973. https://doi.org/10.3390/molecules25214973
19. Giraldo, P., Benavente, E., Manzano-Agugliaro, F., & Gimenez, E. (2019). Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy, 9, Article 352. https://doi.org/10.3390/agronomy9070352
20. Gupta, R., Anshu, Noureldeen, A., & Darwish, H. (2021). Rhizosphere mediated growth enhancement using phosphate solubilizing rhizobacteria and their tri-calcium phosphate solubilization activity under pot culture assays in Rice (Oryza sativa.). Saudi J Biol Sci, 28, 3692–3700. https://doi.org/10.1016/j.sjbs.2021.05.052
21. Husna, Hussain, A., Shah, M., Hamayun, M., Iqbal, A., Qadir, M., Alataway, A., Dewidar, A. Z., Elansary, H. O., & Lee, I.-J. L. (2023). Phytohormones producing rhizobacteria alleviate heavy metals stress in soybean through multilayered response. Microbiological Research, 266, Article 127237. https://doi.org/10.1016/j.micres.2022.127237
22. Karthika, S., Varghese, S., & Jisha, M. S. (2020). Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech, 10, Article 320. https://doi.org/10.1007/s13205-020-02306-1
23. Khumairah, F. H., Setiawati, M. R., Fitriatin, B. N., Simarmata, T., Alfaraj, S., Ansari, M. J., Enshasy, H. A. E., Sayyed, R. Z., & Najafi, S. (2020). Halotolerant plant growth-promoting rhizobacteria isolated from saline soil improve nitrogen fixation and alleviate salt stress in rice plants. Front. Microbiol, 13, Article 905210. https://doi.org/10.3389/fmicb.2022.905210
24. Liu, X., Chen, C., Wang, J., Zou, S., & Long, X. (2021). Phosphorus solubilizing bacteria Bacillus thuringiensis and Pantoea ananatis simultaneously promote soil inorganic phosphate dissolution and soil Pb immobilization. Rhizosphere, 20, Article 100448. https://doi.org/10.1016/j.rhisph.2021.100448
25. Lu, L., Chang, M., Han, X., Wang, Q., Wang, J., Yang, H., Guan, Q., & Dai, S. (2021). Beneficial effects of endophytic Pantoea ananatis with ability to promote rice growth under saline stress. Journal of Applied Microbiology, 131, 1919–1931. https://doi.org/10.1111/jam.15082
26. Martynenko, E., Arkhipova, T., Safronova, V., Seldimirova, O., Galin, I., Akhtyamova, Z., Veselov, D., Ivanov, R., & Kudoyarova, G. (2022). Effects of phytohormone-producing rhizobacteria on casparian band formation, ion homeostasis and salt tolerance of durum wheat. Biomolecules, 12, Article 230. https://doi.org/10.3390/biom12020230
27. Migunova, V. D., Tomashevich, N. S., Konrat, A. N., Lychagina, S. V., Dubyaga, V. M., D'Addabbo, T., Sasanelli, N., & Asaturova, A. M. (2021). Selection of bacterial strains for control of root-knot disease caused by Meloidogyne incognita. Microorganisms, 9, Article 1698. https://doi.org/10.3390/microorganisms9081698
28. Nining, H., Elkawakib, S., Burhanuddin, R., & Feranita, H. (2021). Isolation and characterization of N-fixing and IAA producing rhizobacteria from two rice field agro-ecosystems in South Sulawesi, Indonesia. Biodiversitas, 22, 2497–2503. https://doi.org/10.13057/biodiv/d220506
29. Parashar, M., Dhar, S. K., Kaur, J. A., Chauhan, A., Tamang, J., Singh, G. B., Asyakina, L., Perveen, K., Khan, F., Bukhari, N. A., Mudgal, G., & Gururani, M. A. (2023). Two novel plant-growth-promoting Lelliottia amnigena isolates from Euphorbia prostrata Aiton enhance the overall productivity of wheat and tomato. Plants, 12, Article 3081. https://doi.org/10.3390/plants12173081
30. Patel, T., & Saraf, M. (2017). Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J. Plant Interact, 12(1), 480–487. https://doi.org/10.1080/17429145.2017.1392625
31. Pellegrini, M., Ercole, C., Zio, C. D., Matteucci, F., Pace, L., & Gallo, M. D. (2020). In vitro and in planta antagonistic effects of plant growth-promoting rhizobacteria consortium against soilborne plant pathogens of Solanum tuberosum and Solanum lycopersicum. FEMS Microbiology Letters, 367, Article fnaa099. https://doi.org/10.1093/femsle/fnaa099
32. Ranadev, P., Nagaraju, K., Ramaiah, M., & Kumari, R. (2019). Studies on isolation, characterization and in-vitro screening of plant growth promoting rhizobacteria from rhizospheric soil of chrysanthemum (Dendranthema grandiflora Tzvelev.). International Journal of Current Microbiology and Applied Sciences, 8, 790–803. https://doi.org/10.20546/ijcmas.2019.806.096
33. Ren, X., Zhang, Q., Zhang, W., Mao, J., & Li, P. (2020). Control of aflatoxigenic molds by antagonistic microorganisms: inhibitory behaviors, bioactive compounds, related mechanisms, and influencing factors. Toxins, 12, Article 24. https://doi.org/10.3390/toxins12010024
34. Renoud, S., Bouffaud, M.-L., Dubost, A., Prigent-Combaret, C., Legendre, L., Moënne-Loccoz, Y., & Muller, D. (2020). Co-occurrence of rhizobacteria with nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate deamination abilities in the maize rhizosphere. FEMS Microbiology Ecology, 96, Article fiaa062. https://doi.org/femsec/fiaa062
35. Shin, G. Y., Schachterle, J. K., Shyntum, D. Y., Moleleki, L. N., Coutinho, T. A., & Sundin, G. W. (2019). Functional characterization of a global virulence regulator Hfq and identification of Hfq-dependent sRNAs in the plant pathogen Pantoea ananatis. Front Microbiol, 10, Article 2075. https://doi.org/10.3389/fmicb.2019.02075
36. Sun, X., Xu, Z., Xie, J., Hesselberg-Thomsen, V., Tan, T., Zheng, D., Strube, M. L., Dragoš, A., Shen, Q., Zhang, R., & Kovács, Á.T. (2022). Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J, 16, 774–787. https://doi.org/10.1038/s41396-021-01125-3
37. Toaza, A., Caiza, R. B., Garrido, A. D., Moreno, C. R., Guevara, J., Regalado, H., Flores, F. J., Ramos, L. A., & Garrido, P. A. (2021). First report of Pantoea ananatis causing leaf spot disease of maize in Ecuador. Plant Disease, 105, Article 3286. https://doi.org/10.1094/pdis-02-21-0298-pdn
38. Toh, W. K., Loh, P. C., & Wong, H. L. (2019). First report of leaf blight of rice caused by Pantoea ananatis and Pantoea dispersa in Malaysia. Plant Disease, 103, 1764–1764. https://doi.org/10.1094/PDIS-12-18-2299-PDN
39. Torres, M., Llamas, I., Torres, B., Toral, L., Sampedro, I., & Béjar, V. (2020). Growth promotion on horticultural crops and antifungal activity of Bacillus velezensis XT1. Applied Soil Ecology, 150, Article 103453. https://doi.org/10.1016/j.apsoil.2019.103453
40. Voitenkova, E. V., Matveeva, Z. N., Makarova, M. A., & Egorovaets, S. A. (2018). Difficulties in identification of Comamonas kerstersii strains isolated from intestinal microbiota of residents of republic of Guinea and Russian federation. Russian Journal of Infection and Immunity, 8(2), 164–168. http://dx.doi.org/10.15789/2220-7619-2018-2-163-168
Supplementary files
Review
For citations:
Serazetdinova Yu.R., Fotina N.V., Asyakina L.K., Milentyeva I.S., Prosekov A.Yu. Rhizobacteria for Reducing Biotic Stress in Spring Wheat (Triticum aestivum L.) Caused by Phytopathogenic Fungi. Storage and Processing of Farm Products. 2023;(4):98-113. (In Russ.) https://doi.org/10.36107/spfp.2023.4.515