Корректировка липидного статуса животного сырья
https://doi.org/10.36107/spfp.2024.4.539
Аннотация
Введение: Липидный состав жирового сырья животного происхождения играет ключевую роль в создании сбалансированных кормов для сельскохозяйственных животных. Однако природные жиры часто не соответствуют требованиям по содержанию жирных кислот, что ограничивает их использование в кормовых композициях. Несмотря на достижения в области биотехнологической переработки жиров, остается недостаточно изученным вопрос применения ферментативных методов для корректировки их липидного состава.
Цель: Разработка методологии переэтерификации жирового сырья для получения липидных композиций с измененным жирнокислотным составом, пригодных для использования в рецептурах кормов для сельскохозяйственных животных.
Материалы и методы: Объектами исследования выступали жировые отходы мясокомбинатов, нутряной свиной жир и костный жир крупного рогатого скота. Переэтерификация проводилась в присутствии рыбьего жира. Контролировались дисперсность системы и жирнокислотный состав. Методология включала совмещение жировых компонентов с ферментами, их нагревание и механическое или ультразвуковое диспергирование для повышения эффективности переработки.
Результаты: Было определено содержание основных жирных кислот в исходном сырье и полупродуктах. Получены эмульсии с размером липидных частиц 0,1–200 мкм. Установлены оптимальные условия ферментативной обработки: концентрация субстрата 300–350 г/л, температура 60 ± 2 °С, рН 5,0; ферментная активность 500 ед/л, термическая активация фермента – 20 мин при 60 °С. Гидролизаты, полученные в ходе исследования, могут быть использованы для улучшения кормовой базы.
Выводы: Разработанная методология переработки жирового сырья позволяет эффективно трансформировать как природные жиры, так и отходы мясоперерабатывающих предприятий в высокодисперсную биомассу. Определены оптимальные условия ферментативной обработки, что обеспечивает возможность создания сбалансированных липидных компонентов для производства кормов.
Ключевые слова
Об авторах
Андрей Николаевич ИванкинМГТУ им. Н.Э. Баумана
Россия
д.х.н., профессор, академик МАН ВШ, кафедра химии и химических технологий МГТУ им. Н.Э. Баумана (Мытищинский ф-л)
Алексей Николпевич Веревкин
Россия
к.х.н., доцент, кафедра химии и химических технологий
Список литературы
1. Бабурина, М.И., Иванкин, А.Н., & Красноштанова А.А. (2015). Биотрансформация жировых отходов как метод прижизненного формирования качества мясного сырья путем применения аттрактивных кормов. Все о мясе, (4), 44–48.
2. Baburina, M.I., Ivankin, A.N., & Krasnoshtanova A.A. (2015). Biotransformation of fat waste as a method of intravital formation of the quality of raw meat through the use of attractive feed. All About Meat, 4, 44–48 (In Russ).
3. Иванкин, А.Н., Олиференко, Г.Л., Куликовский, А.В. (2021). Аналитическая химия. Москва: Кнорус. 171 – 212.
4. Ivankin, A.N., Oliferenko, G.L., Kulikovsky, A.V. (2021). Analytical Chemistry. Moscow: Knorus. 171 – 212 (In Russ).
5. Ates, S., Keles, G., Demirci, U., Dogan, S., Kirbas, M., Filley, S. J., & Parker, N. B. (2020). The effects of feeding system and breed on the performance and meat quality of weaned lambs. Small Ruminant Research, 192, Article 106225. https://doi.org/10.1016/j.smallrumres.2020.106225
6. Banaszak, M., Kuzniacka, J., Biesek, J., Maijrano, G., & Adamski, M. (2020). Meat quality traits and fatty acid composition of breast muscles from ducks fed with yellow lupin. Animal, 14(9), 1969–1975. DOI:10.1017/S1751731120000610
7. Bikker, P., & Jansman, A. J. M. (2023). Review: Composition and utilisation of feed by monogastric animals in the context of circular food production systems. Animal, 17(7), Article 100892. https://doi.org/10.1016/j.animal.2023.100892
8. Budak, D., Taşdemir, U., Avdatek, F., & Yeni, D. (2023). The effects of long-chain fatty acids supplemented to rations during the transition and early lactation periods on reproductive performance in Simmental cattle with low estrus signs. Livestock Science, 278(12), Article 105371. https://doi.org/10.1016/j.livsci.2023.105371
9. Bures, D., Needham, T., Barton, L., Lebedova, N., Kotrba, R., Rehak, D., Kucerova, I., Kloucek, P., & Hoffman, L. C. Consumer acceptance and quality of game meat “droеwors” sausages with different levels of added fat. Meat Science, 210(4), Article 109424. https://doi.org/10.1016/j.meatsci.2024.109424
10. Bychkova, E., Rozhdestvenskaya, L., Podgorbunskikh, E., & Kudachyova, P. (2023). The problems and prospects of developing food products from high-protein raw materials. Food Bioscience, 56(12), Article 103286. https://doi.org/10.1016/j.fbio.2023.103286
11. Chantakun, K., Nilsuwan, K., Tagrida, M., Sumpavapol, P., & Benjakul, S. (2022). Tender coconut water fortified with edible bird's nest protein hydrolysate subjected to sterilization and high hydrolytic pressure processes: Qualities, acceptability and changes during refrigerated storage. Food Control, 140(10), Article 109116. https://doi.org/10.1016/j.foodcont.2022.109116
12. Diaz, J. H., Warren, R. J., & Osterm M. J. (2020). The disease ecology, epidemiology, clinical manifestations and management of trichinellosis linked to consumption of wild animal meat. Wilderness & Environmental Medicine, 31(2), 235–244. https://doi.org/10.1016/j.wem.2019.12.003
13. De Caro, J., Sias B., Grandval, P., Ferrato, F., Halimi, H., Carriere, F., & De Caro, A. (2014). Characterization of pancreatic lipase-related protein 2 isolated from human pancreatic juice. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1701(9), 89–99. https://doi.org/10.1016/j.bbapap.2004.06.005
14. Duan, Z., Quan, X., Chen, M., Shi, H., Wang, Z., Li, X., & Qiao, Y. (2023). Compositional characteristics and indication of n-fatty acids in alpine meadow plants and soils. Biochemical Systematics and Ecology, 107(4). Article 104613. https://doi.org/10.1016/j.bse.2023.104613
15. Fan, Z., & Jia, W. (2023). Long short-term memory based quasi-targeted lipidomics reveals propane-1,2-diol expediting the digestion of lipids via mediating the α-helices to a random curl or β folding of lipase. Food Research International. 173(11), Article 113411. https://doi.org/10.1016/j.foodres.2023.113411
16. Gasco, L., Biancarosa, I., & Liland, N. S. (2020). From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Current Opinion in Green and Sustainable Chemistry, 23, 67–79. DOI:10.1016/j.cogsc.2020.03.003
17. Gillespie, J. (2023). Feed rations fed by US dairy producers. Journal of Dairy Science, 106(11), 8152–8168. https://doi.org/10.3168/jds.2023-23363
18. Huang, Y., Li, H., Wang, Z., Fu, Y., Chen, Y., & Wang, X. (2023). Enzymatic synthesis of branched chain fatty acid-enriched structured triacylglycerols via esterification with glycerol. Food Chemistry, 429(15), Article 136943. https://doi.org/10.1016/j.foodchem.2023.136943
19. Huuskonen, A., Hietala, S., Hyvonen, J., Leinonen, I., & Manni, K. (2023). Environmental impacts and animal performance of finishing bulls fed different silage-based total mixed rations Livestock Science, 286(2), Article 105166. https://doi.org/10.1016/j.livsci.2023.105166
20. Kashi, S., Satari, B., Lundin, M., Horvath, I. S., & Othman, M. (2017). Application of a mixture design to identify the effects of substrates ratios and interactions on anaerobic co-digestion of municipal sludge, grease trap waste, and meat processing waste. Journal of Environmental Chemical Engeneering, 6(5), 6156–6164. doi:10.1016/j.jece.2017.11.045
21. Katan, T., Caballero-Solares, A., Taylor, R. G., Rise, M. L., & Parrish, C. C. (2019). Effect of plant-based diets with varying ratios of ω6 to ω3 fatty acids on growth performance, tissue composition, fatty acid biosynthesis and lipid-related gene expression in Atlantic salmon (Salmo salar). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 30(6), 290–304. https://doi.org/10.1016/j.cbd.2019.03.004
22. Kim, B. K., & Kim, S. A. (2023). Investigation of microbial ecology of salted seafood based on culture method and metagenome sequencing. LWT, 187(9), Article 115275. https://doi.org/10.1016/j.lwt.2023.115275
23. Kocabas, D. S., Lyne, J., & Ustunol, Z. (2022). Hydrolytic enzymes in the dairy industry: Applications, market and future perspectives. Trends in Food Science & Technology, 119(1), 467–475. https://doi.org/10.1016/j.tifs.2021.12.013
24. Land, M., Vanderperren, E., & Raes, K. (2017). The effect of raw material combination on the nutritional composition and stability of four types of autolyzed fish silage. Animal Feed Science and Technology, 234(12), 284–294. https://doi.org/10.1016/j.anifeedsci.2017.10.009
25. Liang, Y., Chen, P., Chen, S., Liu, D., Jiang, F., Zhu, Z., Dong, K., Wei, L., & Hou, X. (2023). A greater ratio of thigh subcutaneous fat to abdominal fat is associated with protection against non-alcoholic fatty liver disease. JHEP Reports, 5(7), Article 100730. https://doi.org/10.1016/j.jhepr.2023.100730
26. Liu, Y., Shen, N., Xin, H., Yu, L., Xu, Q., & Cui, Y. (2023). Unsaturated fatty acids in natural edible resources, a systematic review of classification, resources, biosynthesis, biological activities and application. Food Bioscience, 53(6), Article 102790. https://doi.org/10.1016/j.fbio.2023.102790
27. Lu, Y., Cao, J., Zhou, C., He, J., Sun, Y., Xia, Q., & Pan, D. (2021). The technological and nutritional advantages of emulsified sausages with partial back-fat replacement by succinylated chicken liver protein and pre-emulsified sunflower oil. LWT, 149(9), Article 111824. https://doi.org/10.1016/j.lwt.2021.111824
28. Ma, W., Li, H., Zhang, W., Zhai, J., Li, J., Liu, H., Guo, X.F., & Li, D. (2021). Effect of n-3 polyunsaturated fatty acid supplementation on muscle mass and function with aging. A meta-analysis of randomized controlled trials. Prostaglandins, Leukotrienes and Essential Fatty Acids, 165(2), Article 102249. https://doi.org/10.1016/j.plefa.2021.102249
29. Mateos, P. S., Navas, M. B., Morcelle, S. R., Ruscitti, C., Matkovic, S. R., & Briand, L. E. (2021). Insights in the biocatalyzed hydrolysis, esterification and transesterification of waste cooking oil with a vegetable lipase. Catalysis Today, 372(7), 211–219. https://doi.org/10.1016/j.cattod.2020.09.027
30. McQuilken S. A. (2021). The mouth, stomach and intestines. Anaesthesia & Intensive Care Medicine, 22(5), 330–335. https://doi.org/10.1016/j.mpaic.2021.04.001
31. Neklyudov, A. D., Fedotov, G. N., & Ivankin, A. N. (2008). Intensification of composting processes by aerobic microorganisms: a review. Applied Biochemistry and Microbiology. 44(1). 6–18.
32. Nguyen, T. X., McGill, S., Weidt, S., Han, Q. H., Gelemanovic, A., McLaughlin, M., Savoini, G., Eckersall, P. D., & Burchmore, R. (2023). Proteomic changes associated with maternal dietary low ω6:ω3 ratio in piglets supplemented with seaweed. Journal of Proteomics, 270(1), Article 104739. https://doi.org/10.1016/j.jprot.2022.104739
33. Orzuna-Orzuna, J. F., Hernandez-García, P. A., Chay-Canul, A. J., Galvan, C. D., & Ortíz, P. B. (2023). Microalgae as a dietary additive for lambs: A meta-analysis on growth performance, meat quality, and meat fatty acid profile. Small Ruminant Research, 227(10), Article 1070720. https://doi.org/10.1016/j.smallrumres.2023.10707
34. Quaresma, M. A. G., Antunes, I. C., Ferreira, B. G., Parada, A., Elias, A., Barros, M. (2022) The composition of the lipid, protein and mineral fractions of quail breast meat obtained from wild and farmed specimens of Common quail (Coturnix coturnix) and farmed Japanese quail (Coturnix japonica domestica). Poultry Science, 101(1), Article 101505. https://doi.org/10.1016/j.psj.2021.101505
35. Salami, S.A., Luciano, G., Biondi, L., Newbold, C. J., Kerry, J. P., & Priolo A. (2019). Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Animal Feed Science and Technology, 251, 37–55. doi:10.1016/j.anifeedsci.2019.02.006
36. Simonini, R., Maggioni, F., Zanetti, F., Fai, S., Forti, L., Prevedelli, D., & Righia, S. (2021). Synergy between mechanical injury and toxins triggers the urticating system of marine fireworms. Journal of Experimental Marine Biology and Ecology, 534(3), 151487. DOI:10.1016/j.jembe.2020.15148731.
37. Short, C. A., & Hahn, D. A. (2023). Review. Fat enough for the winter? Does nutritional status affect diapause? Journal of Insect Physiology, 145(3), Article 104488. https://doi.org/10.1016/j.jinsphys.2023.104488
38. Shurson, G. C., Dierenfeld, E. S., & Dou, Z. (2023). Review. Rules are meant to be broken – Rethinking the regulations on the use of food waste as animal feed. Resources, Conservation and Recycling, 199(12), Article 107273. https://doi.org/10.1016/j.resconrec.2023.107273
39. Sun, Y., Xiao, Y., Li, C., Yang,, J., Yang, S., Yang, B., & Huang, L. (2022). A parallel survey on the fatty acid composition in backfat and longissimus lumborum and comparison of their associations with growth and carcass traits in pigs. Livestock Science, 263(9), Article 104984. https://doi.org/10.1016/j.livsci.2022.104984
40. Tejeda, J. F., Hernandez-Matamoros, A., & Gonzalez, E. (2023). Characteristics, lipogenic enzyme activity, and fatty acid composition of muscles in the Iberian pig: Effects of protein restriction and free-range feeding. Livestock Science, 267(1), Article 105142. https://doi.org/10.1016/j.livsci.2022.105142
41. Verevkin, S. P., Pimerzin, A. A., Glotov, F. P., & Vutolkina, A. V. (2022). Biofuels energetics: Reconciliation of calorific values of fatty acids methyl esters with help of complementary measurements and structure–property relationships. Fuel, 329(1), Article 125460. https://doi.org/10.1016/j.fuel.2022.125460
42. Xiaoyan, C., Zhongyong, G., Qiuli, F., Long, L., Xiajing, L., Yibing, W., Shouqun, J., & Zongyong, J. (2019). Effects of dietary perilla seed oil supplementation on lipid metabolism, meat quality, and fatty acid profiles in Yellow-feathered chickens. Poultry Science, 98(11), 5714–5723. https://doi.org/10.3382/ps/pez358
43. Yang, M., Tao, L., Kang, X. R., Wang, Z. L., Su, L. Y., Li, L. F., Gu, F., Zhao, C. C., Sheng, J., & Tian, Y. (2023). Leaves as new raw food material: A review of its nutritional composition, functional properties, and comprehensive application. Trends in Food Science & Technology, 138(8), 399–416. https://doi.org/10.1016/j.tifs.2023.05.013
44. Zapata, J., Gallardo, A., Romero, C., Valenzuela, R., Garcia-Diaz, D.F., Duarte, L., Bustamante, B., Gasaly, N., Gotteland, M., & Echeverria, F. (2022). n-3 polyunsaturated fatty acids in the regulation of adipose tissue browning and thermogenesis in obesity. Potential relationship with gut microbiota. Prostaglandins, Leukotrienes and Essential Fatty Acids, 177(2), Article 102388. https://doi.org/10.1016/j.plefa.2021.102388
45. Zhang, W., Hu, W., Zhu, Q., Niu, M., An, N., Feng ,Y., Kawamura, K., & Fu, P. (2024). Hydroxy fatty acids in the surface Earth system. Science of The Total Environment, 906(1). Article 167358. https://doi.org/10.1016/j.scitotenv.2023.167358
46. Zupancic, J., Kushwah, V., & Paudel, A. (2023). Pancreatic lipase digestion: The forgotten barrier in oral administration of lipid-based delivery systems. Journal of Controlled Release, 362(10), 381–395. https://doi.org/10.1016/j.jconrel.2023.08.024
Дополнительные файлы
Рецензия
Для цитирования:
Иванкин А.Н., Веревкин А.Н. Корректировка липидного статуса животного сырья. Хранение и переработка сельхозсырья. 2024;32(4). https://doi.org/10.36107/spfp.2024.4.539
For citation:
Ivankin A.N., Verevkin A.N. Adjustment of the Lipid Status of Animal Raw Materials. Storage and Processing of Farm Products. 2024;32(4). (In Russ.) https://doi.org/10.36107/spfp.2024.4.539