Preview

Storage and Processing of Farm Products

Advanced search

Analysis of Microbiological Indicators of Raw Milk Using Chemical Gas Sensors

https://doi.org/10.36107/spfp.2024.1.559

Abstract

Introduction: Milk is a complex mixture of fats, proteins, carbohydrates, vitamins and minerals in an accessible form, due to which both native and pathogen microorganisms can rapidly grow in it. Therefore, the development of rapid methods for assessing the microbiological parameters of milk and dairy products is an important task.

Purpose: comparative evaluation of microbiological and physicochemical indicators of raw milk with the results of gas phase analysis over it using an array of chemical gas sensors to develop an express method for determination of its safety.

Materials and methods: The experiment was carried out with samples of raw milk obtained in several farms from cows of various breeds. Standard physicochemical indicators were determined according to GOST (fat, protein, dry solids amount, titratable acidity) and microbiological indicators (QMAFAnM, yeast and mold concentration) by inoculation on nutrient media, as well as identification of microorganisms grown on them using Sanger sequencing with bioinformatics analysis. The gas phase of milk samples was analyzed using piezoelectric quartz sensors with composite coatings in a static sorption mode with signal processing by the principal component analysis.

Results: Physico-chemical and microbiological parameters of raw milk samples were determined, and microorganisms and the microflora phase of milk from each farm were identified. Based on the results of preliminary testing of the sensors in vapors of volatile compounds, it was established that they are characterized by high sensitivity and varying selectivity to substances emitted by microflora of raw milk samples. A comparison of sensor signals and standard indicators was carried out. It is shown that the samples differ in the shape of their “visual prints,” which corresponds to changes in the physicochemical and microbiological indicators of milk samples.

Conclusion: An assessment of the relationship between the results of the gas phase analysis of milk samples and their microbiological indicators using the principal component analysis allowed to establish that using an array of chemical sensors it is possible to separate milk samples with different levels of bacterial contamination. It reduces microbiological analysis time by replacing routine methods.

About the Authors

Anastasiya Shuba
Voronezh State University of Engineering Technologies
Russian Federation


Ekatherina Anokhina
Voronezh State University of Engineering Technologies
Russian Federation


R. Umarkhanov
Voronezh State University of Engineering Technologies
Russian Federation


E. Bogdanova
Voronezh State University of Engineering Technologies
Russian Federation


I. Burakova
Voronezh State University of Engineering Technologies
Russian Federation


References

1. Ponomarev, A. N., Melnikova, E. I., & Bogdanova, E. V. (2018). Milk whey as a raw material for the production of food ingredients. Dairy industry, 7, 38-39. (In Russ.).

2. Tyepel, A. (2012). Chemistry and physics of milk. St. Petersburg: Professiya, 824 p. (In Russ.).

3. Shuba, A. A., Kuchmenko, T. A., & Umarkhanov, R. U. (2023). Assessment of the possibility of the prediction and regulation of sorption properties of composite coatings of piezoquartz sensors. Sorption and chromatographic processes, 23 (4), 630-641. https://doi.org/10.17308/sorpchrom.2023.23/11571. (In Russ.).

4. Afreen, A., Ashraf, A., & Chaudhry, A. (2022). Assessment of microbiological quality of raw milk and identification of pathogenic bacteria: microbiological quality of raw milk. Pakistan BioMedical Journal, 5 (5), 88–93. https://doi.org/10.54393/pbmj.v5i5.469

5. Al-Attabi, Z. H., Ehsan, S., & Rahman, M. S. (2021). Quality assessment of milk by sensory and instrument methods. In: Khan, M.S., Shafiur Rahman, M. (eds) Techniques to Measure Food Safety and Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-68636-9_16

6. Bekuma, A., & Galmessa, U. (2018). Review on hygienic milk products practice and occurrence of mastitis in cow’s milk. Agricultural Research & Technology: Open Access Journal, 18 (2), e556053. https://doi.org/10.19080/ARTOAJ.2018.18.556053

7. Biçer, Y., Ezgi Telli, A., Sönmez, G., Telli, N., & Uçar, G. (2021). Comparison of microbiota and volatile organic compounds in milk from different sheep breeds. Journal of Dairy Science, 104 (12), 12303-12311. https://doi.org/10.3168/jds.2021-20911

8. Boor, K. J., Wiedmann, M., Murphy, S., & Alcaine S. (2017). A 100-Year Review: Microbiology and safety of milk handling. Journal of Dairy Science, 100 (12), 9933-9951. https://doi.org/10.3168/jds.2017-12969

9. Chramostová, J., Hanuš., O., Klimešová, M., Němečková, I., Roubal, P., Kopecký, J., Jedelská, R., & Nejeschlebová, L. (2016). Proteolysis in raw milk in relation to microbiological indicators. Czech Journal of Food Sciences, 34 (4), 306-312. https://doi.org/10.17221/64/2016-CJFS

10. Esbensen, K. H., Guyot, D., Westad, F., & Houmoller, L. P. (2002). Multivariate data analysis: in practice: an introduction to multivariate data analysis and experimental design. CAMO AS publ.

11. Eugster, E., & Jakob, E. (2019). Pre-treatments of Milk and their Effect on the Food Safety of Cheese. Milk Science International, 72 (8), 45-52.

12. Galaby, S., Maharik, N., & Khalifa, M. I. (2021). Prevalence of some deteriorating microorganisms in raw milk and some locally made cheese. New Valley Veterinary Journal, e245155271 https://doi.org/10.21608/nvvj.2021.205838

13. Ghafouri, P., Kasaei, B., Aghili, S., Monirvaghefi, A., Hosseini, A. M., Amoozegar, H., & Mirfendereski, G. (2023). Application of nanobiosensors in detection of pathogenic bacteria: an update. Research in Biotechnology and Environmental Science, 2(4), 65-74. https://doi.org/10.58803/rbes.v2i4.22

14. Guetouache, M., Guessas, B., & Medjekal, S. (2014). Composition and nutritional value of raw milk. Issues in Biological Sciences and Pharmaceutical Research, 2(10), 115-122. http://dx.doi.org/10.15739/ibspr.005

15. He, X. P., Zou, B. J., Qi, X. M., & Yi, Ch. (2019). Methods of isothermal nucleic acid amplification-based microfluidic chips for pathogen microorganism detection. Yi Chuan, 41 (7), 611-624. https://doi.org/10.16288/j.yczz.19-051

16. Heng, W. S., Jadhav, S. R., Ueland, M., & Shellie, R. A. (2023). Rapid detection of Escherichia coli in dairy milk using static headspace-comprehensive two-dimensional gas chromatography. Analytical and Bioanalytical Chemistry, 415, 2535–2545 https://doi.org/10.1007/s00216-022-04485-7

17. Hettinga, K. A., van Valenberg, H. J. F., Lam, T. J. G. M., & van Hooijdonk, A. C. M. (2008). Detection of mastitis pathogens by analysis of volatile bacterial metabolites. Journal of Dairy Science, 91 (10), 3834-3839. https://doi.org/10.3168/jds.2007-0941

18. Holeva, M. C., Morán, F., Scuderi, G., González, A., López, M. M. (2019). Development of a real-time PCR method for the specific detection of the novel pear pathogen Erwinia uzenensis. PLOS ONE, 14 (7), e0219487. https://doi.org/10.1371/journal.pone.0219487

19. Iacumin, L., & Comi G. (2021). A survey of a blown pack spoilage produced by Clostridium perfringens in vacuum–packaged wurstel. Food Microbiology, (94), e103654. https://doi.org/10.1016/j.fm.2020.103654

20. Kennang, A., Gagnon, M., LaPointe, G., Chouinard, Y., & Roy, D. (2022). Graduate Student Literature Review: Farm management practices: Potential microbial sources that determine the microbiota of raw bovine milk. Journal of Dairy Science, 105 (9). https://doi.org/10.3168/jds.2021-21758

21. Kuchmenko, T, Menzhulina, D, & Shuba, A. (2022). Noninvasive detection of bacterial infection in children using piezoelectric e-nose. Sensors, 22 (21), e8496. https://doi.org/10.3390/s22218496

22. Kuchmenko, T., Shuba, A., Umarkhanov, R., & Chernitskiy, A. (2021). Portable electronic nose for analyzing the smell of nasal secretions in calves: toward noninvasive diagnosis of infectious bronchopneumonia. Veterinary Sciences, 8 (5), 74. https://doi.org/10.3390/vetsci8050074

23. Kumar, N., Kumar, V., Waheed, S. M., & Pradhan, D. (2021). Efficacy of reuterin and bacteriocins nisin and pediocin in the preservation of raw milk from dairy farms. Food Technology &Biotechnology, 58 (4), 359-369. https://doi.org/10.17113/ftb.58.04.20.6728

24. Lepe-Balsalobre, E., Rubio-Sánchez, R., Ubeda, C. & Lepe, J. A. (2022). Volatile compounds from in vitro metabolism of seven Listeria monocytogenes isolates belonging to different clonal complexes. Journal of Medical Microbiology, 71 (6). https://doi.org/10.1099/jmm.0.001553

25. Li, D., Liu, L., Huang, Q., Tong, T., Zhou, Y., Li, Z., Bai, Q., Liang, H., & Chen, L. (2021). Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World Journal of Microbiology and Biotechnology, 37 (3), e45. https://doi.org/10.1007/s11274-021-03002-9

26. Li, H., Geng, W., Zhang, M., He, Z., Haruna, S. A., Ouyang, Q., & Chen, Q. (2022). Qualitative and quantitative analysis of volatile metabolites of foodborne pathogens using colorimetric-bionic sensor coupled robust models. Microchemical Journal, 177, e107282. https://doi.org/10.1016/j.microc.2022.107282

27. Liu, S., Zhao, J., Guo, Y., Ma, X., Sun, C., Cai, M., Chi, Y., & Xu, K. (2022). Application of ATP-based bioluminescence technology in bacterial detection: a review. Analyst, 26, 148(15), 3452-3459. https://doi.org/10.1039/d3an00576c

28. Lu, M., Shiau, Y., Wong, J., Lin, R., Kravis, H., Blackmon, T., Pakzad, T., Jen, T., Cheng, A., Chang, J., Ong, E., Sarfaraz, N., & Sun Wang, N. (2013). Milk spoilage: methods and practices of detecting milk quality. Food and Nutrition Sciences, 4, 113-123. http://dx.doi.org/10.4236/fns.2013.47A014

29. Patil-Joshi, A., Rangaswamy, B. E., & Apte-Deshpande, A. (2021). Paper-based PCR method development, validation, and application for microbial detection. Journal of Genetic Engineering & Biotechnology, 19, e37. https://doi.org/10.1186/s43141-020-00110-1

30. Quigley, L., O'Sullivan, O., Stanton, C., Beresford, T. P., Ross, R. P., Fitzgerald, G. F., & Cotter, P. D. (2013). The complex microbiota of raw milk. FEMS Microbiology Reviews, 37 (5), 664–698. https://doi.org/10.1111/1574-6976.12030

31. Reis, M. G., Harris, P., Berry, C., Nguyen, H., Maclean, P., & Weeks, M. (2020). Tracking changes in volatile components and lipids after homogenisation and thermal processing of milk. International Dairy Journal, 103, e104624. https://doi.org/10.1016/j.idairyj.2019.104624

32. Ropero-Vega, J. L., Albiares-Sánchez, L. J., León-Sánchez, W. R., Valdivieso-Quintero, W., & Flórez-Castillo, J. M. (2022). Detection of pathogenic E. coli by electrochemical biosensors based on aptamers designed by bioinformatic tools. Chemical Engineering Transactions, 93, 283-288. https://doi.org/10.3303/CET2293048

33. Rubio-Sánchez, R., Lepe-Balsalobre, E., Ubeda, C., & Lepe-Jiménez, J. A. (2024). Volatile biomarkers of Gram-positive bacteria of clinical relevance as a tool for infection diagnosis. International Microbiology. https://doi.org/10.1007/s10123-024-00511-z

34. Sayerbrey, G. (1964). Messung von plattenschwingungen sehr kleiner amplitude durch lichtstrommodulation. Zeitschrift Fuer Physik, 178, 457-471.

35. Shuba, A., Kuchmenko, T., & Menzhulina, D. (2021). Drift compensation of the electronic nose in the development of instruments for out-of-laboratory analysis. Chemistry Proceedings, 5(1), 68. https://doi.org/10.3390/CSAC2021-10464

36. Soumitra, B., & Shanker, L. S. (2017). Recent Trends in Milk Processing-A Short Review. Approaches in Poultry, Dairy & Veterinary Sciences, 2(1), e000527. https://doi.org/10.31031/APDV.2017.02.000527

37. Srivastava P., & Prasad D. (2023). Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. Biotech, 13, e200. https://doi.org/10.1007/s13205-023-03628-6

38. Wang, Y., Nan, X., Zhao, Y., Jiang, Y. L., Wang, M., Wang, H., Zhang, F., Xue, F., Hua, D., Liu, J., Yao, J., & Xiong, B. (2021). Rumen microbiome structure and metabolites activity in dairy cows with clinical and subclinical mastitis. Journal of Animal Science and Biotechnology, 12, e36. https://doi.org/10.1186/s40104-020-00543-1

39. Zastempowska, E., Grajewski, J., & Twarużek, M. (2016). Food-borne pathogens and contaminants in raw milk – a review. Annals of Animal Science, 16 (3), 623-639. https://doi.org/10.1515/aoas-2015-0089


Supplementary files

1. Первый лист рукописи_Оценка микробиологических показателей сырого молока
Subject
Type Чистый текст
Download (29KB)    
Indexing metadata ▾

Review

For citations:


Shuba A., Anokhina E., Umarkhanov R., Bogdanova E., Burakova I. Analysis of Microbiological Indicators of Raw Milk Using Chemical Gas Sensors. Storage and Processing of Farm Products. 2024;32(1). (In Russ.) https://doi.org/10.36107/spfp.2024.1.559

Views: 276


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)