Study on the Effect of Ultrasonic Treatment on the Extraction of Beetroot (Beta vulgaris) Components for Subsequent Use in Fermented Beverages
https://doi.org/10.36107/spfp.2024.3.571
Abstract
Introduction: Kvass is a fermented beverage that contains nutraceutical bioactive compounds, which are extracted both from the raw materials and during the fermentation process. Currently, kvass is produced not only from grain materials but also from berries and vegetables. Beetroot is rich in nitrogen-containing and phenolic compounds, including betanins, organic acids, sugars, fiber, and contains several macro- and microelements, as well as vitamins. The potential for preserving the original properties of raw materials in fermented beverages has not been sufficiently studied.
Purpose: To analyze the composition of beetroot for use in kvass production technology to create beverages with various functional properties and to explore the feasibility of using beetroot in fermented beverages.
Materials and Methods: The study used beetroot roots of the Beta vulgaris Slavyanka variety, harvested in 2024. Beetroot extracts were subjected to heat and ultrasonic treatments. The composition of the aqueous extracts of beet pulp samples obtained during beet processing was determined. Dry matter content was measured according to GOST 33977, titratable acidity according to GOST ISO 750, and total polyphenol content according to GOST R 55488. Flavonoid and riboflavin contents were determined colorimetrically, and betanin content was measured spectrophotometrically at a wavelength of 535 nm.
Results: Ultrasonic treatment resulted in increased levels of flavonoids, catechins, betanin, and riboflavin. The titratable acidity increased by 4.9% in the beet extract. The reducing substance content rose by 0.47% compared to the control sample.
Conclusion: Using beetroot as a raw material in kvass production can enrich the grain wort with phenolic compounds, including flavonoids, catechins, betanin, riboflavin, reducing sugars, and organic acids, positively influencing the enzymatic activity of yeast and the biological value of the resulting kvass.
About the Authors
Larisa N. KharlamovaMarina Yu. Sinelnikova
Russian Federation
Daria Yu. Matveeva
Russian Federation
References
1. Бахарев, В. В., Воронина, М. С., Гуляева, А. Н., Нафикова, О. А. (2022). Исследование физико-химических показателей свекольных выжимок после их дегидратации с последующей экструзией. Индустрия питания, 7(3), 25–31. https://doi.org/10.29141/2500-1922-2022-7-3-3
2. Евграфова, В. Е., Колесниченко, М. Н., Курцева, В. Г. (2020). Исследование влияния растительного сырья и пробиотических культур на процессы брожения при производстве хлебного кваса. Ползуновский вестник, 4, 53-61. https://doi.org/ 10.25712/ASTU.2072-8921.2020.04.011
3. Еременко, О. Н., Кох, Ж. А., Тарнопольская, В. В., Демиденко, Н. Ю. (2021). Перспективы использования столовой свеклы в производстве функциональных напитков. Ползуновский вестник, 2, 102-109. https://doi.org/10.25712/ASTU.2072-8921.2021.02.014
4. Колесниченко, М. Н., Каменская, Е. П. (2020). Перспективы использования плодов жимолости в производстве хлебного кваса. Ползуновский вестник, 1, 13-20. https://doi.org/ 10.25712/ASTU.2072-8921.2020.01.003
5. Коротких, Е. А., Новикова, И. В., Агафонов, Г. В., Коротких, Н. В., Криваносов, И. Н. (2020). Интенсификация биотехнологии кваса с применением нетрадиционных видов сырья. Вестник ВГУИТ, 82(3), 123-130. https://doi.org/10.20914/2310-1202-2020-3-123-130
6. Крыльский, Д. В., Сливкин, А. И., & Брежнева, Т. А. (2008). Практикум по фармацевтической химии (лекарственные вещества с гетероциклической структурой. Воронеж: Издательско-полиграфический центр Воронежского государственного университета.
7. Маслянников, П. В., Чупахина, Г. Н., Скрыпник, Л. Н., Федураев, П. В., Селедцов, В. И. (2014). Экологический анализ активности накопления биофлаваноидов в лекарственных растениях. Вестник Балтийского федерального университета им. К.И.Канта, 7, 110-120
8. Обрезкова, М. В., Каменская, Е. П., Вагнер, В. А. (2019). Разработка рецептуры кваса брожения с использованием концентрата свекольного сока. Вестник КрасГАУ, 9(150), 158-165.
9. Позднякова, В. Ф., Сенченко, М. А. (2019). Производство кваса с использованием заменителей сахара из растительного сырья, выращенного в условиях Ярославской области. Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии, 7(4), 55-63.
10. Соколова, Д. В. (2022). Динамические изменения содержания бетанина в столовой свекле в течение вегетационного периода: их взаимодействие с абиотическими факторами. Вавиловский журнал генетики и селекции, 26(1), 30-39. https://doi.org/10.18699/VJGB-22-05
11. Шестакова, Т. С., Белоногова, В. Д., Петриченко, В. М. (2016). Спектрофотометрический метод определения содержания флавоноидов в траве Veronica chamaedrys (Scrophulariaceae). Медицинский альманах, 1(41), 127-130.
12. Arjeh, E., Khodaei, S. M., Barzegar, M., Pirsa, S., Karimi Sani, I., Rahati, S., & Mohammadi, F. (2022). Phenolic compounds of sugar beet (Beta vulgaris L.): Separation method, chemical characterization, and biological properties. Food Science & Nutrition, 10(12), 4238-4246. https://doi.org/10.1002/fsn3.3017
13. Aztatzi-Rugerio, L., Granados-Balbuena, S. Y., Zainos-Cuapio, Y., Ocaranza-Sánchez, E., & Rojas-López, M. (2019). Analysis of the degradation of betanin obtained from beetroot using Fourier transform infrared spectroscopy. Journal of Food Science and Technology, 56(8), 3677-3686. https://doi.org/10.1007/s13197-019-03826-2
14. Baião, D. D. S., de Freitas, C. S., Gomes, L. P., da Silva, D., Correa, A. C. N. T. F., Pereira, P. R., Aguila, E. M. D., & Paschoalin, V. M. F. (2017). Polyphenols from root, tubercles and grains cropped in Brazil: Chemical and nutritional characterization and their effects on human health and diseases. Nutrients, 9(9), 1044. https:doi.org/10.3390/nu9091044
15. Baião, D. D. S., Silva, D. V. T., & Paschoalin, V. M. F. (2020). Beetroot, a remarkable vegetable: its nitrate and phytochemical contents can be adjusted in novel formulations to Benefit Health and support cardiovascular disease therapies. Antioxidants, 9, 960. https://doi.org/10.3390/antiox9100960
16. Baryga, A., Ziobro, R., Gumul, D., Rosicka-Kaczmarek, J., & Miśkiewicz, K. (2023). Physicochemical properties and evaluation of antioxidant potential of sugar beet pulp - Preliminary analysis for further use (future prospects). Agriculture, 13(5), 1039. https://doi.org/10.3390/agriculture13051039
17. Ceclu, L., & Nistor, O.-V. (2020). Red beetroot: Composition and health effects - A review. Journal of Nutritional Medicine and Diet Care, 6, 043. https://doi.org/10.23937/2572-3278.1510043
18. Choińska, R., Piasecka-Jóźwiak, K., Woźniak, Ł., Świder, O., Bartosiak, E., Bujak, M., & Roszko, M.Ł. (2022). Starter culture-related changes in free amino acids, biogenic amines profile, and antioxidant properties of fermented red beetroot grown in Poland. Scientific. Reports,12, 20063. https://doi.org/10.1038/s41598-022-24690-9
19. Gamage, S. M., Mihirani, M. K. S., Perera, O. D. A. N., & Weerahewa, H. D. (2016). Development of synbiotic beverage from beetroot juice using beneficial probiotic Lactobacillus Casei 431. Ruhuna Journal of Science, 7, 64–69. https://doi.org/10.4038/rjs.v7i2.20
20. Glaser, S. J., Abdelaziz, O. Y., & Demoitié, C. (2024). Fractionation of sugar beet pulp polysaccharides into component sugars and pre-feasibility analysis for further valorisation. Biomass Conversion and Biorefinery, 14, 3575–3588. https://doi.org/10.1007/s13399-022-02699-4
21. Gruska, R. M., Baryga, A., Kunicka-Styczyńska, A., Brzeziński, S., Rosicka-Kaczmarek, J., Miśkiewicz, K., & Sumińska, T. (2022). Fresh and stored sugar beet roots as a source of various types of mono- and oligosaccharides. Molecules, 27(16), 5125. https://doi.org/10.3390/molecules27165125
22. Jakubczyk, K., Melkis, K., Janda-Milczarek, K., & Skoniecznazydecka, K. (2024). Phenolic compounds ˙ and antioxidant properties of fermented beetroot juices enriched with different additives. Foods, 13, 102. https://doi.org/10.3390/ foods13010102
23. Hoffmann, C. M., Kenter, C. (2018). Yield potential of sugar beet - Have we hit the ceiling? Front Plant Science, 9, 289. https://doi.org/10.3389/fpls.2018.00289
24. Mirmiran, P., Houshialsadat, Z., Gaeini, Z., Bahadoran, Z., & Azizi, F. (2020). Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutrition & Metabolism, 17(3). https://doi.org/10.1186/s12986-019-0421-0
25. Ninfali, P., Antonini, E., Frati, A., & Scarpa, E.S. (2017). C-Glycosyl Flavonoids from Beta vulgaris Cicla and Betalains from Beta vulgaris rubra: Antioxidant, anticancer and antiinflammatory activities - A review. Phytother. Research, 31(6), 871-884. https://doi.org/10.1002/ptr.5819
26. Płatosz, N., Sawicki, T., & Wiczkowski, W. (2020). Profile of Phenolic acids and flavonoids of red beet and its fermentation products. Does long-term consumption of fermented beetroot juice affect phenolics profile in human blood plasma and urine? Polish Journal of Food and Nutrition Sciences, 70(1), 55-65. https://doi.org/10.31883/pjfns/116613
27. Sawicki, T., Bączek, N., & Wiczkowski, W. (2016). Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. Journal of Functional Foods, 27, 249-261. https://doi.org/10.1016/ j.jff.2016.09.004
28. Sobhy, E. S., Abdo, E., Shaltout, O., Abdalla, A., & Zeitoun, A. (2020). Nutritional evaluation of beetroots (Beta vulgaris L.) and its potential application in a functional beverage. Plants, 9(12), 1752. https://doi.org/10.3390/plants9121752
29. Tomaszewska, J., Bieliński, D., Binczarski, M., Berlowska, J., Dziuganc, D., Piotrowski, J., Stanishevsky, A., & Witońska, I. A. (2018). Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Advancec, 8, 3161-3177. https://doi.org/ 10.1039/C7RA12782K
Review
For citations:
Kharlamova L.N., Sinelnikova M.Yu., Matveeva D.Yu. Study on the Effect of Ultrasonic Treatment on the Extraction of Beetroot (Beta vulgaris) Components for Subsequent Use in Fermented Beverages. Storage and Processing of Farm Products. 2024;32(3):33-41. (In Russ.) https://doi.org/10.36107/spfp.2024.3.571