Preview

Storage and Processing of Farm Products

Advanced search

Prospects for the combined use of Pseudomonas koreensis and Pseudomonas plecoglossicida for biological enrichment of plants with nitrogen

https://doi.org/10.36107/spfp.2025.1.573

Abstract

Introduction: Significant economic costs and potential environmental risks associated with improper use of mineral fertilizers necessitate the development of alternative strategies for nitrogen nutrition of agricultural crops. One of such approaches is biological nitrogen fixation by nitrogen-fixing microorganisms. The process of biological fixation has been studied best in the context of symbiotic interactions with legumes, but modern research is focused on expanding its application to non-legumes. In this context, non-symbiotic diazotrophs of the genus Pseudomonas are of considerable interest; their nitrogen-fixing potential requires further study and verification. This study characterizes the functional potential of domestic Pseudomonas strains and forms a scientific basis for their effective combined use to improve nitrogen nutrition of non-legumes.

Purpose: To characterize the nitrogen-fixing capacity of Pseudomonas koreensis В-3481 and Pseudomonas plecoglossicida В-13802 and to investigate the prospects of their combined application for enhancing plant nitrogen nutrition.

Materials and Methods: The study analysed the strains Pseudomonas koreensis B-3481 and Pseudomonas plecoglossicida B-13802 obtained from the National Bioresource Center of the All-Russian Collection of Industrial Microorganisms of the National Research Center «Kurchatov Institute». The nitrogen-fixing activity of the strains was studied using a Rapid N analyzer, and the ability to produce ammonia was evaluated spectrophotometrically. Laboratory testing was carried out on «Siberian Alliance» spring soft wheat (Triticum aestivum L. emend.). The amount of nitrogen and protein in the aboveground part of plants in the sprout phase on a decimal code scale was determined using the Dumas method.

Results: Research has shown that the studied strains fixed nitrogen when grown on a nitrogen-free nutrient medium, and also had the ability to produce ammonia. The present study is the first to report the nitrogen-fixing ability of Pseudomonas koreensis B-3481 and Pseudomonas plecoglossicida B-13802. The strains did not inhibit each other's growth, which made it possible to construct consortia based on them. The optimal ratio of 2:1 (P. koreensis: P. plecoglossicida) intensified nitrogen fixation (289.76 μg/mL) and ammonia production (344.20 μg/mL). Laboratory testing showed a statistically significant increase in germination, the length of the aerial and root parts of Triticum aestivum L. emend. when treated with a consortium in comparison with the control option by 17% (2.4 and 1.7 cm, respectively). Also, the aerial part of Triticum aestivum L. emend., treated by the consortium, contained 0.51% more nitrogen and 1.15% more protein than the control variant.

Conclusion: It is promising to use a consortium consisting of Pseudomonas koreensis B-3481 and Pseudomonas plecoglossicida B-13802 in a ratio of 2 to 1 as a biofertilizer to increase nitrogen nutrition and wheat yield.

About the Authors

Yuliya Renatovna Serazetdinova
Kemerovo State University
Russian Federation


Natalia Nikolaevna Bogacheva
Kemerovo State University
Russian Federation


Konstantin Valerievich Karchin
Kemerovo State University
Russian Federation


Olga Alexandrovna Isachkova
Kemerovo Research Institute of Agricultural Sciences – branch of the Siberian Federal Scientific Center for Agrobiotechnology of the Russian Academy of Sciences
Russian Federation


Olga Alexandrovna Neverova
Kemerovo State University
Russian Federation


Lyudmila Konstantinovna Asyakina
Kemerovo State University
Russian Federation


References

1. Rafiq, M., Saqib, M., Jawad, H., Javed, T., Hussain, S., Arif, M., Ali, B., Bazmi, M. S. A., Abbas, G., Aziz, M., Al-Sadoon, M. K., Gulnaz, A., Lamlo, S. F., Sabir, M.A., & Akhtar, J. (2020). Improving Quantitative and Qualitative Characteristics of Wheat (Triticum aestivum L.) through Nitrogen Application under Semiarid Conditions. Phyton-International Journal of Experimental Botany, 92(4), 1001–1017. https://doi.org/10.32604/phyton.2023.025781

2. Ahmed, M., Rauf, M., Akhtar, M., Mukhtar, Z., & Saeed, N. A. (2020). Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environ Sci Pollut Res, 27, 17661–17670. https://doi.org/10.1007/s11356-020-08236-y

3. Khan, M. N., Mobin, M., Abbas, Z. K., & Alamri, S. A. (2020). Fertilizers and Their Contaminants in Soils, Surface and Groundwater. Encyclopedia of the Anthropocene, 5, 225–240. https://doi.org/10.1016/B978-0-12-809665-9.09888-8

4. Singh, P., Singh, R. K., Li, H. B., Guo, D. J., Sharma, A., Verma, K. K., Solanki, M. K., Upadhyay, S. K., Lakshmanan, P., Yang, L. T., & Li, Y. R. (2020). Nitrogen fixation and phytohormone stimulation of sugarcane plant through plant growth promoting diazotrophic Pseudomonas. Biotechnology and Genetic Engineering Review. 1–21. https://doi.org/10.1080/02648725.2023.2177814

5. Singh, R. K., Singh, P., Sharma, A., Guo, D. J., Upadhyay, S. K., Song, Q. Q., Verma, K. K., Li, D. P., Malviya, M. K., Song, X. P., Yang, L. T., & Li, Y. R. (2022). Unraveling Nitrogen Fixing Potential of Endophytic Diazotrophs of Different Saccharum Species for Sustainable Sugarcane Growth. Int J Mol Sci, 23(11), 6242. https://doi.org/10.3390/ijms23116242

6. Chandra, D., Srivastava, R., Glick, B., & Sharma, A. (2018). Drought-Tolerant Pseudomonas spp. Improve the Growth Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Under Non-Stressed and Drought-Stressed Conditions. Pedosphere, 28, 227–240.

7. Panpatte, D. G., Jhala, Y. K., Shelat, H. N., & Vyas, R. V. (2016) Pseudomonas fluorescens: A Promising Biocontrol Agent and PGPR for Sustainable Agriculture. Access mode: https://link.springer.com/chapter/10.1007/978-81-322-2647-5_15 (date of the application: 20.05.2024).

8. Shrivastava, S., Egamberdieva, D., & Varma, A. (2015). Plant Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants: The State of the Art. Access mode: https://link.springer.com/chapter/10.1007/978-3-319-13401-7_1 (date of the application: 20.05.2024).

9. Serazetdinova, Yu. R., Fotina, N. V., Asyakina, L. K., Milentyeva, I. S., & Prosekov, A. Yu. (2023). Rizobakterii Triticum spp. dlya snizheniya bioticheskogo stressa, vyzvannogo fitopatogennymi gribami [Rhizobacteria for Reducing Biotic Stress in Spring Wheat (Triticum aestivum L.) Caused by Phytopathogenic Fungi]. Khraneniye i pererabotka sel'khozsyr'ya [Storage and Processing of Farm Products], 4, 98–113. https://doi.org/10.36107/spfp.2023.4.515 98–113

10. Parashar, M., Dhar, S. K., Kaur, J., Chauhan, A., Tamang, J., Singh, G. B., Asyakina, L., Perveen, K., Khan, F., Bukhari, N.A., Mudgal, G., & Gururani, M.A. (2023). Two Novel Plant-Growth-Promoting Lelliottia amnigena Isolates from Euphorbia prostrata Aiton Enhance the Overall Productivity of Wheat and Tomato. Plants, 12, 3081. https://doi.org/10.3390/plants12173081

11. Faskhutdinova, E. R., Fotina, N. V., Neverova, O. A., Golubtsova, Y. V., Mudgal, G., Asyakina, L. K., & Aksenova, L. M. (2024). Extremophilic bacteria as biofertilizer for agricultural wheat. Foods and Raw Materials, 12(2), 348–360. https://doi.org/10.21603/2308-4057-2024-2-613

12. Asyakina, L. K., Vorob'eva, E. E., Proskuryakova, L. A. & Zharko, M. Yu. Evaluating extremophilic microorganisms in industrial regions. Foods and Raw Materials, 11(1), 162–171. https://doi.org/10.21603/2308-4057-2023-1-556

13. Yarzábal, L. A., Monserrate, L., Buela, L., & Chica, E. (2018). Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biol, 41, 2343–2354. https://doi.org/10.1007/s00300-018-2374-6

14. Safari, D., Jamali, F., Nooryazdan, H., & Bayat, F. (2018) Evaluation of ACC deaminase producing “Pseudomonas fluorescens” strains for their effects on seed germination and early growth of wheat under salt stress. Australian Journal of Crop Science, 12(3), 413–421. https://doi.org/10.21475/ajcs.18.12.03.pne801

15. Fox, A. R., Soto, G., Valverde, C., Russo, D., Lagares, A. Jr., Zorreguieta, Á., Alleva, K., Pascuan, C., Frare, R., Mercado-Blanco, J., Dixon, R., & Ayub, N. D. (2016). Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol, 18(10), 3522–3534. https://doi.org/10.1111/1462-2920.13376.

16. Pham, V. T., Rediers, H., Ghequire, M. G., Nguyen, H. H., De Mot, R., Vanderleyden, J., & Spaepen, S. (2017). The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch Microbiol, 199(3), 513–517. https://doi.org/10.1007/s00203-016-1332-3


Review

For citations:


Serazetdinova Yu.R., Bogacheva N.N., Karchin K.V., Isachkova O.A., Neverova O.A., Asyakina L.K. Prospects for the combined use of Pseudomonas koreensis and Pseudomonas plecoglossicida for biological enrichment of plants with nitrogen. Storage and Processing of Farm Products. 2025;33(1):116-129. (In Russ.) https://doi.org/10.36107/spfp.2025.1.573

Views: 167


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)