An Approach to Automation and Digital Control of Ferroimpurities in Food Ingredients
https://doi.org/10.36107/spfp.2024.3.592
Abstract
Introduction: One of the quality indicators of flour, cereals, sugar and many other food products is the content of ferroimpurities. Current methods of appropriate control (including those given in numerous standards), as a rule, encompass three operations of magnetic extraction of ferroimpurities, their accumulation and determination of the total mass. However, with a limited (even increased) number of such operations, a certain unrecovered, often significant, particle mass always remains in the sample of the test product, which leads to an error in the control.
Purpose: To present the approbation results of the analyzer created by the authors with the capabilities of automation and digital control of the content of ferroimpurities content, leading to quickly obtaining a more objective result compared to existing control methods.
Materials and Methods: We experimentally obtained a mass-operational dependence of the decrease in the content of ferroimpurities: as they were magnetically extracted from the product, then we found its mathematical dependence - for further extrapolation and calculation of the total mass. As an object of research, samples of such food products as flour, malt, tea were utilized.
Results: The developed laboratory sample of the analyzer and the principle of its operation and test are described. Considering the results of testing the analyzer, the obtained values for the content of ferroimpurities in the test samples significantly exceed the standardized values, which substantiates appropriate decisions on the removal of such impurities from the studied products.
About the Authors
Anna A. SandulyakRussian Federation
Maria N. Polismakova
Russian Federation
Nikita V Soloviev
Russian Federation
Darya A. Sandulyak
Russian Federation
Alexander V. Sandulyak
Vera A. Ershova
Russian Federation
References
1. Глебов, Л. А., Демский, А. Б., Веденьев, В. Ф., Яблоков, А. Е. Технологическое оборудование и поточные линии предприятий по переработке зерна. М.: ДеЛи принт. 2010. 696с.
2. Зверев, С., Крементуло, А., Лавринович, С., Назаров, И., Чавчанидзе А. (2008). Исследование содержания железа и металломагнитных примесей в муке. Хлебопродукты, № 2, 58–61.
3. Масюткин, Е. П. (2016). Извлечение ферромагнитных примесей из сыпучих сельскохозяйственных материалов. Вестник КрасГАУ, 11, 54–60.
4. Мурашов, И. Д., Крюкова, Е. В., Горячева, Е. Д., Джабакова, А. Э., Парамонов, Г. В. (2019). Обнаружение металлических и неметаллических включений в пищевых продуктах электрометрическим методом. Health, Food & Biotechnology, 1(4), 81–91. https://doi.org/10.36107/hfb.2019.i4.s279
5. Невзоров, В. Н., Ярум, А. И., Самойлов, В. А. (2012). Совершенствование магнитных сепараторов для очистки зерна и муки. Вестник КрасГАУ, № 5, 426–431.
6. Носова, М. В., Дремучева, Г. Ф. (2023). Исследования хлебопекарных свойств муки ржаной хлебопекарной обдирной, поставляемой на хлебопекарные предприятия РФ. Хранение и переработка сельхозсырья, № 1, 69–82. https://doi.org/10.36107/spfp.2023.385
7. Сандуляк, А. А., Полисмакова, М. Н., Ершова, В. А., Сандуляк, А. В. (2011). Контроль ферропримесей пищевых сред: недостатки и основные концепции совершенствования нормативно-метрологической базы. Хранение и переработка сельхозсырья, № 1, 60–66.
8. Сандуляк, А. А., Полисмакова, М. Н., Ершов, Д. В., Сандуляк, А. В., Ершова, В. А., Сандуляк, Д. А. (2010). Функциональная экстраполяция массово-операционной характеристики магнитофореза как основа прецизионного метода контроля феррочастиц. Измерительная техника, №8, 57–60.
9. Фазуллина, О. Ф., Смирнов, С. О. (2020). Разработка системы управления безопасностью процесса производства макаронных изделий. Техника и технология пищевых производств, 50 (4), 736–748.
10. http://doi.org/10.21603/2074-9414-2020-4-736-748
11. Agarwal, A. K., Bijwe, J., & Das L. M. (2003). Wear Assessment in a Biodiesel Fueled Compression Ignition Engine. Journal of Engineering for Gas Turbines and Power, 125, 820–826. https://doi.org/10.1115/1.1501079
12. Cuerva, M.P., Gonçalves A.C., Albuquerque, M. C. F., Chavarette F.R., Outa R., & Almeida E. F. (2022). Analysis of the Influence of Contamination in Lubricant by Biodiesel in a Pin-On-Disk Equipment. Materials Research. 25, e20210375. https://doi.org/10.1590/1980-5373-MR-2021-0375
13. Gao, Y., Olivas-Martinez, M., Sohn, H. Y., Kim, H. G., & Kim, C. W. (2012). Upgrading of Low-Grade Manganese Ore by Selective Reduction of Iron Oxide and Magnetic Separation. Metallurgical and Materials Transactions B, 43 (6), 1465–1475. https://doi.org/10.1007/s11663-012-9731-6
14. Goncalves, A. C., Chavarette, F. R., Outa, R., & Godoi, L. H. A. (2024). Assistance of analytical ferrography in the interpretation of wear test results carried out with biolubricants. Tribology International, 197, 109758. https://doi.org/10.1016/j.triboint.2024.109758
15. Hu, Z., Lu, D., Wang, Y., Zheng, X., & Zhang, Y. (2024). A novel pneumatic dry high-intensity magnetic separator for the beneficiation of fine-grained hematite. Powder Technology, 433, 119216.
16. https://doi.org/10.1016/j.powtec.2023.119216
17. Jia, R., Ma, B., Zheng, C., Wang, L., Ba, X., Du, Q., & Wang, K. (2018). Magnetic Properties of Ferromagnetic Particles under Alternating Magnetic Fields: Focus on Particle Detection Sensor Applications. Sensors, 18(12), 4144.
18. https://doi.org/10.3390/s18124144
19. Koukabi, N., Kolvari, E., Zolfigol, M., Khazaei, A., Shaghasemi, B. S., & Fasahati, B. (2012). A Magnetic Particle-Supported Sulfonic Acid Catalyst: Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis. Advanced Synthesis & Catalysis, 354 (10), 2001–2008.
20. http://dx.doi.org/10.1002/adsc.201100352
21. Kheshti, Z., Ghajar, K. A., Altaee, A., Kheshti, M. R. (2019). High-Gradient Magnetic Separator (HGMS) combined with adsorption for nitrate removal from aqueous solution. Separation and Purification Technology, 212, 650–659. https://doi.org/10.1016/j.seppur.2018.11.080
22. Li, W., Zhou, L., Han, Y., Xu, R. (2019). Numerical simulation and experimental verification for magnetic field analysis of thread magnetic matrix in high gradient magnetic separation. Powder Technology, 355, 300–308
23. https://doi.org/10.1016/j.powtec.2019.07.024
24. Liu, X., Wang, J. Sun, K., Cheng, L., Wu, M., & Wang, X. (2021). Semantic segmentation of ferrography images for automatic wear particle analysis. Engineering Failure Analysis, 122, 105268.
25. https://doi.org/10.1016/j.engfailanal.2021.105268
26. Macián, V., Payri, R., Tormos, B., & Montoro, L. (2006). Applying analytical ferrography as a technique to detect failuresnin Diesel engine fuel injection systems. Wear, 260, 562–566. https://doi.org/10.1016/j.wear.2005.03.019
27. Shin S.-H., Kim, Y.-H., Jung, S.-K., Sun, K.-H., Kang, S.-G., Jeong S.-K., & Kim, H.-G. (2004). Combined performance of electrocoagulation and magnetic separation processes for treatment of dye wastewater. Korean Journal of Chemical Engineering, 21 (4), 806–810.
28. https://doi.org/10.1007/BF02705524
29. Singh, S., Sahoo, H., Rath, S. S., Sahu, A.K., & Das, B. (2015). Recovery of iron minerals from Indian iron ore slimes using colloidal magnetic coating. Powder Technology, 269, 38–45. https://doi.org/10.1016/j.powtec.2014.08.065
30. Tandon, N., Parey, A. (2006). Condition Monitoring of Rotary Machines. Condition Monitoring and Control for Intelligent Manufacturing. Springer Series in Advanced Manufacturing, 109–136. https://doi.org/10.1007/1-84628-269-1_5
31. Toneguzzo, P., Viau, G., & Fiévet, F. (2006). Monodisperse Ferromagnetic Metal Parti¬cles: Synthesis by Chemical Routes, Size Control and Magnetic Characterizations. Handbook of Advanced Magnetic Materials, 37(19), 1193–1242. https://doi.org/10.1007/1-4020-7984-2_29
32. Trafialek, J., Kaczmarek, S., Kolanowski, W. (2016). The risk analysis of metallic foreign bodies in food products. Journal of Food Quality, 39, 398–407.
33. https://doi.org/10.1111/jfq.12193
34. Tripathy, S.K., Suresh, N. (2017). Influence of particle size on dry high-intensity magnetic separation of paramagnetic mineral. Advanced Powder Technology, 28 (3), 1092–1102. https://doi.org/10.1016/j.apt.2017.01.018
35. Wang, F., Tang, D., Gao, L., Dai, H., Jiang, P., Lu, M. (2020). Dynamic capture and accumulation of multiple types of magnetic particles based on fully coupled multiphysics model in multiwire matrix for high-gradient magnetic separation. Advanced Powder Technology, 31 (3), 1040–1050.
36. https://doi.org/10.1016/j.apt.2019.12.020
37. Wang, Y., Xue, Z., Zheng, X., Lu, D., Li, S., & Li, X. (2019). Effect of matrix saturation magnetization on particle capture in high gradient magnetic separation. Minerals Engineering, 139, 105866.
38. https://doi.org/10.1016/j.mineng.2019.105866
39. Xue, H., Han, C., Chen, M., Fan, G., & Zhou, J. (2022). Improving mechanical properties of manufactured sand concrete with high biotite content: Application of magnetic separation process and equipment optimization. Construction and Building Materials, 350, 128861.
40. https://doi.org/10.1016/j.conbuildmat.2022.128861
41. Xue, Z., Wang, Y., Zheng, X., Lu, D., & Li, X. (2020). Particle capture of special cross-section matrices in axial high gradient magnetic separation: A 3D simulation. Separation and Purification Technology, 237, 116375.
42. Xue, Z., Wang, Y., Zheng, X., Lu, D., Sun, Z., & Jing, Z. (2022). Mechanical entrainment study by separately collecting particle deposit on matrix in high gradient magnetic separation. Minerals Engineering, 178, 107435. https://doi.org/10.1016/j.mineng.2022.107435
43. Ye F., Deng H., Guo Z., Wei B., & Ren X. (2023). Separation mechanism and experimental investigation of pulsating high gradient magnetic separation, Results in Physics, 49, 106482. https://doi.org/10.1016/j.rinp.2023.106482
Review
For citations:
Sandulyak A.A., Polismakova M.N., Soloviev N.V., Sandulyak D.A., Sandulyak A.V., Ershova V.A. An Approach to Automation and Digital Control of Ferroimpurities in Food Ingredients. Storage and Processing of Farm Products. 2024;32(3):133-143. (In Russ.) https://doi.org/10.36107/spfp.2024.3.592