Preview

Storage and Processing of Farm Products

Advanced search

Electrohydrodynamic Grains Drying on Pilot Equipment with Continuous Flow

https://doi.org/10.36107/spfp.2025.1.620

Abstract

Introduction: Modern grain drying technologies aim to improve energy efficiency while preserving the quality characteristics of the final product. The energy performance of drying processes directly influences the technological and economic competitiveness of grain processing enterprises. In the context of increasing volumes of processed raw materials and the associated rise in energy consumption, the need for alternative drying methods is becoming increasingly relevant. At the same time, the application of electrohydrodynamic (EHD) flow in grain drying processes remains insufficiently explored, indicating a scientific and technological gap that necessitates further research in this area.

Purpose: To study the drying process of grain material in the EHD flow on pilot equipment with continuous flow and to determine drying efficiency, energy consumption and the possibility of scaling the equipment. 

Materials and Methods: Feed grain of wheat was used as the drying object. A pilot drying unit with a capacity of 50 kg/hour was used as an EHD-flow drying technology. The equipment operates on a cyclic principle, acting on the feed grain of wheat alternately with a corona and spark discharge, repeatedly passing the grain material through the electrode blocks until a preset moisture level is reached. The electric field strength in the treatment area reached 8 kV/cm. The drying efficiency was analyzed by evaluating the drying kinetics, total energy consumption, and exergetic drying index. All experiments were repeated three times, and the results were statistically processed using ANOVA analysis methods.

Results: It is shown that the superposition of electrohydrodynamic flow on grain material causes a combination of the effects of "etching" the grain surface with the appearance of a fine-mesh structure and promotes volumetric heating due to Joule heat. When drying grain using electrohydrodynamic flow, the decrease in grain moisture in one pass in the equipment was 0.28%. The unit cost of the proposed equipment is 1.85 kW/kg of moisture, which is 30% lower than traditional drying using a thermal agent under similar temperature conditions. 

Conclusions: The equipment for drying grain material with the application of electrohydrodynamic flow can be used in low-productivity technical lines for the purpose of drying or full-fledged drying of grain material. The results obtained can be used in the development of new drying plants and the modernization of existing technologies in agriculture and food industry.

About the Authors

Emad Hussein Ali Munassar
Kuban State Technological University
Russian Federation


Ivan Alexandrovich Shorstkii
Kuban State Technological University
Russian Federation


Andrey Gennadievich Sherstyukov
Kuban State Technological University
Russian Federation


References

1. Scholtz, V.; Šerá, B.; Khun, J.; Šerý, M.; Julák, J. Effects of Nonthermal Plasma on Wheat Grains and Products. J. Food Qual., 2019, 2019, 7917825. https://doi.org/10.1155/2019/7917825.

2. Ohta, T. Chapter 8 - Plasma in Agriculture. In Cold Plasma in Food and Agriculture; Misra, N. N., Schlüter, O., Cullen, P. J., Eds.; Academic Press: San Diego, 2016; pp 205–221. https://doi.org/https://doi.org/10.1016/B978-0-12-801365-6.00008-1.

3. Baskakov, I. V., Orobinskij, V. I., Gievskij, A. M., Cherny`shov, A. V., & Chernova, O. V. (2023). Vliyanie processa ozonirovaniya na kachestvenny`e pokazateli zerna ozimoj pshenicy. Xranenie i pererabotka sel`xozsy`r`ya, (1).

4. Munassar E. X. A., Shorstkii I. A. Sushka zernovogo materiala s predvaritel`noj obrabotkoj slabotochny`m plazmenny`m kanalom iskrovogo razryada //Texnika i texnologiya pishhevy`x proizvodstv. – 2024. – T. 54. – №. 1. – S. 116-123.

5. Dubinov, A. E.; Lazarenko, E. R.; Selemir, V. D. Vliyanie vozdushnoj plazmy` tleyushhego razryada na semena zernovy`x kul`tur. IEEE Transakcii po plazmennoj nauke , 2000, 28 (1), 180-183. https://doi.org/10.1109/27.842898.

6. Iranshahi, K., Onwude, D. I., Rubinetti, D., Martynenko, A., & Defraeye, T. (2022). Scalable electrohydrodynamic drying configuration for dehydrating biological materials at industrial scale.

7. Baldanov B.B., Ranzhurov T.V., Sordonova M.N., Budazhapov L.V. Izmenenie svojstv i struktury` poverxnosti zeren pod vozdejstviem tleyushhego razryada pri atmosfernom davlenii. Doklady` po fizike plazmy`, 2020, 46 (1), 110-114. https://doi.org/10.1134/S1063780X2001002X.

8. Randeniya, L. K.; de Groot, G. J. J. B. Non-Thermal Plasma Treatment of Agricultural Seeds for Stimulation of Germination, Removal of Surface Contamination and Other Benefits: A Review. Plasma Process. Polym., 2015, 12 (7), 608–623. https://doi.org/https://doi.org/10.1002/ppap.201500042.

9. Li, L.; Jiang, J.; Li, J.; Shen, M.; He, X.; Shao, H.; Dong, Y. Effects of Cold Plasma Treatment on Seed Germination and Seedling Growth of Soybean. Sci. Rep., 2014, 4 (1), 1–7. https://doi.org/10.1038/srep05859.

10. de Groot, G. J. J. B.; Hundt, A.; Murphy, A. B.; Bange, M. P.; Mai-Prochnow, A. Cold Plasma Treatment for Cotton Seed Germination Improvement. Sci. Rep., 2018, 8 (1), 14372. https://doi.org/10.1038/s41598-018-32692-9.

11. Chaple, S.; Sarangapani, C.; Jones, J.; Carey, E.; Causeret, L.; Genson, A.; Duffy, B.; Bourke, P. Effect of Atmospheric Cold Plasma on the Functional Properties of Whole Wheat (Triticum Aestivum L.) Grain and Wheat Flour. Innov. Food Sci. Emerg. Technol., 2020, 66 (October), 10.2529. https://doi.org/10.1016/j.ifset.2020.102529.

12. Los, A.; Ziuzina, D.; Boehm, D.; Cullen, P. J.; Bourke, P. Investigation of Mechanisms Involved in Germination Enhancement of Wheat (Triticum Aestivum) by Cold Plasma: Effects on Seed Surface Chemistry and Characteristics. Plasma Process. Polym., 2019, 16 (4), 1–12. https://doi.org/10.1002/ppap.201800148.

13. Stolárik, T.; Henselová, M.; Martinka, M.; Novák, O.; Zahoranová, A.; Černák, M. Effect of Low-Temperature Plasma on the Structure of Seeds, Growth and Metabolism of Endogenous Phytohormones in Pea (Pisum Sativum L.). Plasma Chem. Plasma Process., 2015, 35 (4), 659–676. https://doi.org/10.1007/s11090-015-9627-8.

14. Defraeye T., Martynenko A. Electrohydrodynamic drying of food: New insights from conjugate modeling //Journal of cleaner production. – 2018. – Т. 198. – С. 269-284.

15. Pat. 2796452 RF. Sposob sushki zernovogo materiala/I.A. Shorstkij, E.H.A. Munassar, 2022.

16. Munassar E. H. A., Shorstkij I. A. zernosushil'naya ustanovka na baze elektrogidrodinamicheskogo potoka / Peredovye issledovaniya Kubani: Sbornik materialov Ezhegodnoj otchetnoj konferencii grantoderzhatelej Kubanskogo nauchnogo fonda, Sochi, 29–31 maya 2024 goda. – Krasnodar: Kubanskij nauchnyj fond, 2024. – S. 84-86. – EDN TNJMKG.

17. Smith J., Brown L. Advances in Electrohydrodynamic Drying Techniques // Journal of Food Engineering. 2022. Vol. 150. P. 123-130.

18. Johnson M. The Role of Plasma Technology in Sustainable Agriculture // Agricultural Science Journal. 2021. Vol. 45. No. 3. P. 200-210.

19. Kumar R., Singh A. Energy Efficiency in Grain Drying: A Review // Renewable Energy Reviews. 2020. Vol. 34. P. 456-465.

20. Lee S., Park J. Impact of Non-Thermal Plasma on Seed Germination and Growth // Plant Science Today. 2019. Vol. 6. No. 2. P. 89-95.

21. Garcia P., Martinez F. Electrohydrodynamic Flow in Agricultural Applications // Journal of Applied Physics. 2018. Vol. 112. No. 5. P. 567-575.

22. Nguyen T., Tran H. Modeling and Simulation of Electrohydrodynamic Drying Processes // Simulation Modelling Practice and Theory. 2017. Vol. 78. P. 45-55.

23. Wang Y., Zhao X. Plasma-Assisted Drying of Agricultural Products: A Review // Food and Bioprocess Technology. 2016. Vol. 9. No. 4. P. 567-578.

24. Chen L., Zhang Y. Electrohydrodynamic Drying: Mechanisms and Applications // Drying Technology. 2015. Vol. 33. No. 10. P. 1234-1245.

25. Patel D., Mehta R. Innovations in Grain Drying Technologies // Journal of Agricultural Engineering. 2014. Vol. 55. No. 2. P. 78-85.

26. Huang J., Li Q. Electrohydrodynamic Techniques in Food Processing // Food Engineering Reviews. 2013. Vol. 5. No. 3. P. 150-160.

27. Singh P., Gupta S. Energy Consumption in Electrohydrodynamic Drying // Energy Reports. 2012. Vol. 8. P. 345-352.

28. Zhou X., Wang L. Electrohydrodynamic Drying of Biological Materials // Journal of Biological Engineering. 2011. Vol. 4. No. 1. P. 23-30.

29. Kim H., Choi S. Plasma Technology in Food Preservation // Food Preservation Science. 2010. Vol. 12. No. 4. P. 234-240.

30. Liu Y., Chen M. Electrohydrodynamic Drying: A Sustainable Approach // Sustainability in Food Processing. 2009. Vol. 3. No. 2. P. 100-110.

31. Gonzalez R., Fernandez J. Advances in Plasma-Assisted Drying // Journal of Plasma Science. 2008. Vol. 15. No. 3. P. 89-97.


Review

For citations:


Munassar E.H., Shorstkii I.A., Sherstyukov A.G. Electrohydrodynamic Grains Drying on Pilot Equipment with Continuous Flow. Storage and Processing of Farm Products. 2025;33(1):130-140. (In Russ.) https://doi.org/10.36107/spfp.2025.1.620

Views: 192


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)