Probiotic Feed Additive with Microbial Beta-Carotene: Development and Properties
https://doi.org/10.36107/spfp.2025.1.621
Abstract
Introduction: Combined feed additives that incorporate probiotic microorganisms and β-carotene have the potential to enhance the nutritional efficiency and health status of farm animals. However, such formulations are not currently represented among registered feed products, and microbial sources of β-carotene are used only to a limited extent. This highlights the need for novel biotechnological solutions in feed production.
Purpose: To develop a carotene-containing probiotic feed additive (FA) and to evaluate its safety and effectiveness when included in the diets of broiler chickens and fattening pigs.
Materials and Methods: The experimental FA sample contained spore-forming bacteria Bacillus subtilis BKM B–3826D and Bacillus licheniformis BKM B–3825D (5×10⁷ CFU/g of each strain), along with inactivated biomass of Mycolicibacterium neoaurum BKM Ac–3067D (containing at least 250 µg of β-carotene per gram). Toxicological evaluation was performed in accordance with GOST 32296–2013, and toxicity class was determined according to GOST 12.1.007–76. Biological activity was assessed using standard methods in broiler chickens and piglets.
Results: The developed probiotic feed additive was classified as hazard class 4 (low toxicity). When included in broiler diets at 1.0 kg/ton, it resulted in a 4.3% increase in average daily weight gain and a 1.4-fold increase in liver vitamin A content. In piglets, live weight gain increased by 6.7% compared to the control group.
Conclusion: The safety and biological effectiveness of the new carotene-containing probiotic feed additive with microbial β-carotene were confirmed. This additive may be recommended for use in specialized and small-scale farming operations.
About the Authors
Vera V. YaderetsRussian Federation
Natalia V. Karpova
Russian Federation
Elena V. Glagoleva
Russian Federation
Vakhtang V. Dzhavakhiya
Russian Federation
References
1. Buyarov, V.S., Chervonova, I.V., Mednova, V.V., & Ilyicheva, I.N. (2020). Efficiency of application of phytobiotics in poultry farming (Rewiew). Bulletin of Agrarian science, 3(84), 44-59. (in Russ.) https://doi:10.17238/issn2587-666X.2020.3.44
2. Ivanova, N.V., & Radjabov, R.G. (2019). Resource-saving technologies in pig production. Bulletin of Don State Agrarian University, 3-1, 5-9. (In Russ.)
3. Mailyan, E. S. (2021) The problem of the use of antibiotics in animal husbandry and ways to control microbial antibiotic resistance. BIO, 12(255), 4-16 (In Russ.)
4. Yaderetz, V.V., Karpova, N.V., Glagoleva, E.V., Dzhavakhiya, V.V., Kartashov, M.I., Lenkova, T.N., & Egorova T.A. (2024) The effect of a carotene containing probiotic feed additive on the productive performance in broilers. Ptitsevodstvo, 73(6), 19-24. (In Russ.) https://doi:10.33845/0033-3239-2024-73-6-19-24
5. Yaderetz, V.V., Karpova, N.V., Dzhavakhiya, V.V., Glagoleva, E.V., & Ostrenko, K.S. (2024) Investigation of the effectiveness of a carotene-containing probiotic supplement in feeding growing fattened pigs. Pigbreeding, 7, 45 – 48 (In Russ.) https://doi:10/37925/0039-713X-2024-7-45-48
6. Yaderetz, V.V., Karpova, N.V., Glagoleva, E.V., Dzhavakhiya, V.V., & Ostrenko K.S. (2024) The influence of feed protein-carotene probiotic additive on hemato-biochemical parameters and intestinal biocenosis of fattening piglet. Veterinary medicine, 12, 44 – 48. (In Russ.) https://doi:10.30896/0042-4846.2024.27.12.44-48
7. Alagawany, M., Abd El-Hack, M.E., Farag, M.R., Sachan, S., Karthik, K., & Dhama, K. (2018) The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environ Sci Pollut Res, 25, 10611–8. https://doi:10.1007/s11356-018-1687-x
8. Al-Seraih, A.A., Alsereah, B.A., Alwaely, W.A., Al-Hejaj, M.Y. (2022) Effect of Bacillus subtilis as a Probiotic on the Productive and Physiological Performance of Broilers. Arch Razi Inst., 77(5), 1647-1653. https://doi:10.22092/ARI.2022.357803.2100.
9. Awad, W.A., Ghareeb., K., Abdel-Raheem, S., Bohm, J. (2009) Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult Sci., 88(1), 49–56. https://doi: 10.3382/ps.2008-00244
10. Azad, M.A.K., Sarker, M., Li, T., & Yin, J. (2018) Probiotic species in the modulation of gut mmicrobiota: an overview. Biomed Res Int., 8, 9478630. https://doi:10.1155/2018/9478630
11. Ban, Y., & Guan, L.L. (2021) Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J Anim Sci Biotechnol, 12(1), 109. https://doi:10.1186/s40104-021-00630-x
12. Bernardeau, M., Lehtinen, M.J. Forssten, S.D., & Nurminen, P. (2017) Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J Food Sci Technol., 54(8), 2570-2584. https://doi:10.1007/s13197-017-2688-3
13. Grant, A., Gay, C.G., & Lillehoj H.S. (2018) Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Pathol., 47(4), 339-351. https://doi:10.1080/03079457.2018.1464117
14. Jha, R., Fouhse, J.M., Tiwari, U.P., Li, L., & Willing, B.P. (2019) Dietary Fiber and Intestinal Health of Monogastric Animals. Front. Vet. Sci., 6, 48. https://doi:10.3389/fvets.2019.00048
15. Jha, R., Das R, Oak, S., & Mishra, P. (2020) Probiotics (Direct-Fed Microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: a systematic review. Animals (Basel), 10(10), 1863. https://doi:10.3390/ani10101863
16. Gadde, U.D., Oh, S., Lee, Y., Davis, E., Zimmerman, N., Rehberger, T., & Lillehoj, H.S. (2017) Dietary Bacillus subtilis- based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens. Res. Vet. Sci., 114, 236–243. https://doi:10.1016/j.rvsc.2017.05.004
17. Grant, A., Gay, C.G., & Lillehoj, H.S. (2018) Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Pathol., 47(4), 339-351. https://doi:10.1080/03079457.2018.1464117
18. Khalid, F., Khalid, A., Fu, Y., Hu, Q., Zheng, Y., Khan, S., & Wang Z. (2021) Potential of Bacillus velezensis as a probiotic in animal feed: a review. J Microbiol., 59(7), 627-633. https://doi:10.1007/s12275-021-1161-1
19. Lewton, J.R,, Woodward, A.D., Moser, R.L., Thelen, K.M., Moeser, A.J., Trottier, N.L., Tempelman, R.J., & Rozeboom, D.W. (2022) Effects of a multi-strain Bacillus subtilis-based direct-fed microbial on immunity markers and intestinal morphology in diets fed to weanling pigs. Transl Anim Sci., 6(3), txac083. https://doi:10.1093/tas/txac083
20. Ma, T., Suzuki, Y., & Guan, L.L. (2018) Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals. Vet Immunol Immunopathol, 205, 35–48. https://doi:10.1016/j.vetimm.2018.10.004
21. Meléndez-Martínez, A. J. (2019) An Overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Mol Nutr Food Res., 63, e1801045. https://doi:10.1002/mnfr.201801045
22. Pandey, S., Doo, H., Keum, G.B., Kim, E.S., Kwak, J., Ryu, S., Choi, Y., Kang, J., Kim, S., Lee, N.R., Oh, K.K., Lee, J.H., & Kim, H.B. Antibiotic resistance in livestock, environment and humans: One Health perspective. (2024) J Anim Sci Technol., 66(2), 266-278. https://doi:10.5187/jast.2023.e129
23. Pluske, J. R., Turpin, D.L., & Kim J.C. (2018) Gastrointestinal tract (gut) health in the young pig. Anim Nutr., 4(2), 187-196. https://doi:10.1016/j.aninu.2017.12.004
24. Ramirez-Garzon, O., Barber, D., Meneses, L., & Soust, M. (2024) Effect of gestational direct-fed microbials supplementation on the metabolic profile in periparturient dairy cows. Animals (Basel)., 14(20), 2928. https://doi:10.3390/ani14202928
25. Ruiz Sella, S.R.B.R., Bueno, T., de Oliveira, A.A.B., Karp, S.G., & Soccol, C.R. (2021) Bacillus subtilis natto as a potential probiotic in animal nutrition. Crit. Rev. Biotechnol. 2021, 41, 355–369. https://doi:10.1080/07388551.2020.1858019
26. Sarsour, A.H., Koltes, D.A., Kim, E.J., Persia, & M.E. (2022) Effects of a direct fed microbial (DFM) on broiler chickens exposed to acute and chronic cyclic heat stress in two consecutive experiments. Poult Sci. 101(4), 101705. https://doi:10.1016/j.psj.2022.101705
27. Shastak, Y., & Pelletier, W. (2023) Review: Vitamin A supply in swine production: Current science and practical considerations. Applied Animal Science, 39(5), 289-305. https://doi:10.15232/aas.2023-02409
28. Telhig, S., Ben Said, L., Zirah, S., Fliss, I., & Rebuffat, S. (2020) Bacteriocins to thwart bacterial resistance in gram negative bacteria. Front Microbiol., 11, 586433. https://doi:10.3389/fmicb.2020.586433
29. Yaderets, V., Karpovam, N., Glagoleva, Е., Shibaeva, А., & Dzhavakhiya, V. (2023) Bacillus subtilis RBT-7/32 and Bacillus licheniformis RBT-11/17 as new promising strains for use in probiotic feed additives. Microorganisms, 11(11), 2729. https://doi:10.3390/microorganisms11112729
30. Yaderets, V., Karpova, N., Glagoleva, Е., Shibaeva, А., & Dzhavakhiya, V. (2023) Enhanced β-Carotene production in Mycolicibacterium neoaurum Ac-501/22 by combining mutagenesis, strain selection, and subsequent fermentation optimization. Fermentation, 9(12), 1007. https://doi: /10.3390/fermentation9121007
Supplementary files
Review
For citations:
Yaderets V.V., Karpova N.V., Glagoleva E.V., Dzhavakhiya V.V. Probiotic Feed Additive with Microbial Beta-Carotene: Development and Properties. Storage and Processing of Farm Products. 2025;33(1):141-160. (In Russ.) https://doi.org/10.36107/spfp.2025.1.621