Preview

Storage and Processing of Farm Products

Advanced search

In Silico Approaches for Identifying the Structure of a Glucagon Family Protein

https://doi.org/10.36107/spfp.2025.2.624

Abstract

Introduction: Interest in functional proteins derived from food sources has increased due to their potential therapeutic effects across a wide range of diseases. Studying the biological activity of food proteins with antihypertensive properties through conventional methods is costly and labor-intensive. Therefore, computational approaches capable of predicting the formation of bioactive peptides from animal-derived sources, as well as analyzing the relationship between protein structure and function, have gained new significance in the scientific domain. The use of in silico proteomic analysis methods may help address the global challenge of providing sufficient high-quality protein by enabling the development of functional food products.

Purpose: To identify the structure and functional domains of a low-molecular-weight protein from porcine stomach using in silico methods (UniProt and STRING) in order to evaluate its antihypertensive potential.

Materials and Methods: A protein with a molecular weight of approximately 10.7 kDa, isolated from porcine stomach, was characterized using in silico approaches based on UniProtKB (for functional annotation) and STRING (for protein–protein interaction network analysis), followed by structural modeling.

Results: Protein P01284, belonging to the glucagon family and consisting of 75 amino acids (with a molecular weight of 8.5 kDa), was identified. Based on domain analysis and protein–protein interaction profiling, the protein is presumed to exhibit vasoactive properties.

Conclusion: The findings support the utility of in silico analysis for predicting the bioactivity of food-derived proteins and justify further in vivo investigation of P01284 as a nutraceutical antihypertensive agent.

About the Authors

Elena S. Razumovskaya
State Veterinary Service of the Altai Territory in Barnaul
Russian Federation


Irina S. Milentyeva
Kemerovo State University
Russian Federation


References

1. Budanova A.A., Shchukovskaya T.N. In silico Research at the Stages of Designing Modern Means

2. for Prevention of Plague (by the Example of Subunit Vaccines). Problems of Particularly

3. Dangerous Infections.2022;(3):6-13.(In Russ.)https://doi.org/10.21055/0370-1069-2022-3-6

4. Vostrikova N.L., Chernukha I.M., Khvostov D.V. METHODOLOGICAL ASPECTS OF

5. IDENTIFICATION OF TISSUE-SPECIFIC PROTEINS AND PEPTIDES FORMING THE

6. CORRECTIVE PROPERTIES OF INNOVATIVE MEAT PRODUCTS. Theory and practice

7. of meat processing. 2018;3(3):36-55. https://doi.org/10.21323/2414-438X-2018-3-3-36-55

8. Epifanov R.Yu., Afonnikov D.A. BioNet: Peptide Mass-Spectrum Prediction. Vestnik NSU.

9. Series: Information Technologies. 2020;18(2):31-42. (In Russ.)

10. https://doi.org/10.25205/1818-7900-2020-18-2-31-42Зверев, С. В. (2021) Оптимизация

11. пищевых композиций по профилю идеального белка / С. В. Зверев, В. И. Карпов, М. А.

12. Никитина // Пищевые системы. – 2021. – Т. 4, № 1. – С. 4-11.

13. http://dx.doi.org/10.21323/2618-9771-2021-4-1-4-11.

14. Kruchinin AG., Bolshakova EI. Hybrid Strategy of Bioinformatics Modeling (in silico): Biologically Active Peptides of Milk Protein. Food Processing: Techniques and Technology. 2022;52(1):46–57. https://doi.org/10.21603/2074- 9414-2022-1-46-57

15. Kurbanova M. G., Voroshilin R.A., Matyushev V.V., Kalugina O. I., Mukhim-zade M., (2023) Using the in silico method to predict the bioactive peptides properties / M.G. Kurbanova [et al.] // Bulliten KrasSAU. 2023;(2): 236–241. (In Russ.). DOI: 10.36718/1819-4036-2023-2-236-241.

16. Peskova E. V. (2022) Bioinformatic analysis of proteins using databases

17. data (literature review) / E. V. Peskova, N. I. Bulatova // Health risk analysis - 2022. Fundamental and applied aspects of ensuring the sanitary and epidemiological well-being of the population: Proceedings of the international meeting on environment and health RISE-2022. Materials of the XII All-Russian scientific and practical conference with international participation. In two volumes, Perm, May 18–20, 2022. Volume 1. – Perm: Perm National Research Polytechnic University, 2022. – P. 398-402.

18. Polishchuk, Ekaterina. (2024). Benefits and Constraints of In Silico Tools for Analyzing Protegrin-

19. Characteristics / E. Polishchuk // New technologies in medicine, biology, pharmacology

20. and ecology: materials of the International Conference NT+ME `24, Crimea, Yalta-Gurzuf,

21. June 02–09, 2024. – Moscow: Limited Liability Company “Institute of New Information

22. Technologies”, 2024. – P. 210-216.

23. Ryazantseva K. A. (2020) Prospects for bioinformatics for research food bioactive peptides using

24. in silico tools / K. A. Ryazantseva, E. Yu. Agarkova // News of higher educational

25. institutions. Food technology. – 2020. – No. 4(376). – P. 8-12.

26. http://dx.doi.org/10.26297/0579-3009.2020.4.2.

27. Razumovskaya E.S., Milentyeva I.S. Studying the fractional composition of meat protein using

28. the method vertical electrophoresis / Razumovskaya E.S., Milentyeva I.S. // Technology and

29. merchandising of innovative food products. – 2025. – No. 1(90). – P. 3-7.

30. Tikhonov S.L., Tikhonova N.V., Ulitina E.A., 2023, Comparative evaluation of the biological

31. effect of native and synthesized peptides, Vestnik of Immanuel Kant Baltic Federal

32. University. Series: Natural and Medical Sciences, №3. P. 106—117. doi: 10.5922/gikbfu-2023-3-8.

33. Khlebnikova, A. Yu. (2023) Analysis of the current state of protein use and peptides in the food

34. industry / A. Yu. Khlebnikova, M. G. Kurbanova // Food health-saving technologies:

35. Collection of abstracts of the II International Symposium dedicated to the 50th anniversary of

36. KemSU, Kemerovo, November 02–03, 2023. – Kemerovo: Kemerovo State University, 2023.

37. – P. 427-430.

38. Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. (2017) Proteomics:

39. Technologies and Their Applications. J Chromatogr Sci. 2017 Feb;55(2):182-196. http://dx.doi.org/10.1093/chromsci/bmw167.

40. Basu S, Naha A, Veeraraghavan B, Ramaiah S, Anbarasu A. In silico structure evaluation of BAG3

41. and elucidating its association with bacterial infections through protein-protein and host-

42. pathogen interaction analysis. J Cell Biochem. 2022 Jan;123(1):115-127. doi:

43. /jcb.29953. Epub 2021 May 17. PMID: 33998043.

44. Cao L, Coventry B, Goreshnik I, Huang B, Sheffler W, Park JS, Jude KM, Marković I, Kadam

45. RU, Verschueren KHG, Verstraete K, Walsh STR, Bennett N, Phal A, Yang A, Kozodoy L,

46. DeWitt M, Picton L, Miller L, Strauch EM, DeBouver ND, Pires A, Bera AK, Halabiya S,

47. Hammerson B, Yang W, Bernard S, Stewart L, Wilson IA, Ruohola-Baker H, Schlessinger J,

48. Lee S, Savvides SN, Garcia KC, Baker D. Design of protein-binding proteins from the target

49. structure alone. Nature. 2022 May;605(7910):551-560. doi: 10.1038/s41586-022-04654-9.

50. Epub 2022 Mar 24. PMID: 35332283; PMCID: PMC9117152.

51. Chanajon P, Hamzeh A, Tian F, Roytrakul S, Oluwagunwa OA, Kadam D, Aluko RE, Aueviriyavit

52. S, Wongwanakul R, Yongsawatdigul J. Hypotensive effect of potent angiotensin-I-converting

53. enzyme inhibitory peptides from corn gluten meal hydrolysate: Gastrointestinal digestion and

54. transepithelial transportation modifications. Food Chem. 2025 Jan 1;462:140953. Doi

55. /j.foodchem.2024.140953. Epub 2024 Aug 23. PMID: 39216374.

56. Kelly R.T., (2020) Single-cell Proteomics: Progress and Prospects. Mol Cell

57. Proteomics. 2020 Nov;19(11):1739-1748. http://dx.doi.org/10.1074/mcp.R120.002234.

58. Kynast JP, Schwägerl F, Höcker B. ATLIGATOR: editing protein interactions with an atlas-based

59. approach. Bioinformatics. 2022 Nov 30;38(23):5199-5205. doi:

60. /bioinformatics/btac685. PMID: 36259946; PMCID: PMC9710554.

61. Kynast JP, Höcker B. Atligator Web: A Graphical User Interface for Analysis and Design of

62. Protein-Peptide Interactions. Biodes Res. 2023 May 4;5:0011. doi: 10.34133/bdr.0011.

63. PMID: 37849459; PMCID: PMC10521702.

64. Lin K, Zhang L-W, Han X, Xin L, Meng Z-X, Gong P-M, et al. (2018) Yak milk

65. casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chemistry. 2018;254:340–347. https://doi.org/10.1016/j.foodchem.2018.02.051

66. Lockridge O., Schopfer L.M., (2023) Review: Organophosphorus toxicants, in

67. addition to inhibiting acetylcholinesterase activity, make covalent adducts on multiple proteins and promote protein crosslinking into high molecular weight aggregates. Chem Biol Interact. 2023 May 1;376:110460. http://dx.doi.org/10.1016/j.cbi.2023.110460.

68. Mathew B, Bathla S, Williams KR, Nairn AC. Deciphering Spatial Protein-Protein Interactions in

69. Brain Using Proximity Labeling. Mol Cell Proteomics. 2022 Nov;21(11):100422. doi:

70. /j.mcpro.2022.100422. Epub 2022 Oct 2. PMID: 36198386; PMCID: PMC9650050.

71. Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense.

72. Front Plant Sci. 2022 Dec 14;13:1035573. doi: 10.3389/fpls.2022.1035573. PMID:

73. ; PMCID: PMC9795235.

74. Minkiewicz P., Iwaniak A., Darewicz M. BIOPEP-UWM virtual—a novel database of food-

75. derived peptides with in silico-predicted biological activity //Applied Sciences. – 2022. – Т.

76. – №. 14. – С. 7204.

77. Perkons I., Varunjikar M.S., Rasinger J.D., (2023) Unveiling the potential of

78. proteomics in addressing food and feed safety challenges. EFSA J. 2023 Nov 30;21(Suppl 1) :e211013. http://dx.doi.org/ 10.2903/j.efsa.2023.e211013.

79. Rodrigues R.T., Chizzotti M.L., Vital C.E., Baracat-Pereira M.C., Barros E., Busato

80. K.C., Gomes R.A., Ladeira M.M., Martins T.D. (2017) Differences in Beef Quality between Angus (Bos taurus taurus) and Nellore (Bos taurus indicus) Cattle through a Proteomic and Phosphoproteomic Approach. PLoS One. 2017 Jan 19;12(1):e0170294. http://dx.doi.org/10.1371/journal.pone.0170294.

81. Rozanova S., Barkovits K., Nikolov M., Schmidt C., Urlaub H., Marcus K. (2021)

82. Quantitative Mass Spectrometry-Based Proteomics: An Overview. Methods Mol Biol. 2021; 2228:85-116. http://dx.doi.org/10.1007/978-1-0716-1024-4_8.

83. Seychell, B. C.; Beck, T. Beilstein J. Org. Chem. 2021, 17, 1–10. doi:10.3762/bjoc.17.1

84. Sekar G, Ojoawo A, Moldoveanu T. Protein-protein and protein-lipid interactions of pore-forming

85. BCL-2 family proteins in apoptosis initiation. Biochem Soc Trans. 2022 Jun 30;50(3):1091-

86. doi: 10.1042/BST20220323. PMID: 35521828; PMCID: PMC9310348.

87. Suo Q, Yue Y, Wang J, Wu N, Geng L, Zhang Q. Isolation, identification and in vivo

88. antihypertensive effect of novel angiotensin I-converting enzyme (ACE) inhibitory peptides

89. from Spirulina protein hydrolysate. Food Funct. 2022 Aug 30;13(17):9108-9118. doi:

90. /d2fo01207c. PMID: 35946851.

91. Toldrá F, Reig M, Mora L. Management of meat by- and co-products for an improved meat

92. processing sustainability. Meat Sci. 2021 Nov;181:108608.

93. doi: 10.1016/j.meatsci.2021.108608. Epub 2021 Jun 16. PMID: 34171788.

94. Tu M, Qiao X, Wang C, Liu H, Cheng S, Xu Z, et al. (2021) In vitro and in silico

95. analysis of dual-function peptides derived from casein hydrolysate. Food Science and Human Wellness. 2021;10(1):32–37. https://doi.org/10.1016/j.fshw.2020.08.014

96. Wang J., Fu Y., Su T., Wang Y., Soladoye O.P., Huang Y., Zhao Z., Zhao Y., Wu

97. W. (2023) A Role of Multi-Omics Technologies in Sheep and Goat Meats: Progress and Way Ahead. Foods. 2023 Nov 9;12(22):4069. http://dx.doi.org/10.3390/foods12224069.

98. Wang H., Chen M., Zhang X., Xie S., Qin J., Li J. Peptide-based PROTACs: Current Challenges

99. and Future Perspectives // Current Medicinal Chemistry. - 2024. - Т. 31. - №2. - C. 208-222.

100. doi: 10.2174/0929867330666230130121822

101. Wu K, Jiang H, Hicks DR, Liu C, Muratspahic E, Ramelot TA, Liu Y, McNally K, Gaur A,

102. Coventry B, Chen W, Bera AK, Kang A, Gerben S, Lamb MY, Murray A, Li X, Kennedy

103. MA, Yang W, Schober G, Brierley SM, Gelb MH, Montelione GT, Derivery E, Baker D.

104. Sequence-specific targeting of intrinsically disordered protein regions. bioRxiv [Preprint].

105. Sep 2:2024.07.15.603480. doi: 10.1101/2024.07.15.603480. PMID: 39071356;

106. PMCID: PMC11275711.

107. Zheng SL, Luo QB, Suo SK, Zhao YQ, Chi CF, Wang B. Preparation, Identification, Molecular

108. Docking Study and Protective Function on HUVECs of Novel ACE Inhibitory Peptides

109. from Protein Hydrolysate of Skipjack Tuna Muscle. Mar Drugs. 2022 Feb 27;20(3):176.

110. doi: 10.3390/md20030176. PMID: 35323475; PMCID: PMC8954214.


Supplementary files

Review

For citations:


Razumovskaya E.S., Milentyeva I.S. In Silico Approaches for Identifying the Structure of a Glucagon Family Protein. Storage and Processing of Farm Products. 2025;33(2). https://doi.org/10.36107/spfp.2025.2.624

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)