In Silico Approaches for Identifying the Structure of a Glucagon Family Protein
https://doi.org/10.36107/spfp.2025.2.624
Abstract
Introduction: Interest in functional proteins derived from food sources has increased due to their potential therapeutic effects across a wide range of diseases. Studying the biological activity of food proteins with antihypertensive properties through conventional methods is costly and labor-intensive. Therefore, computational approaches capable of predicting the formation of bioactive peptides from animal-derived sources, as well as analyzing the relationship between protein structure and function, have gained new significance in the scientific domain. The use of in silico proteomic analysis methods may help address the global challenge of providing sufficient high-quality protein by enabling the development of functional food products.
Purpose: To identify the structure and functional domains of a low-molecular-weight protein from porcine stomach using in silico methods (UniProt and STRING) in order to evaluate its antihypertensive potential.
Materials and Methods: A protein with a molecular weight of approximately 10.7 kDa, isolated from porcine stomach, was characterized using in silico approaches based on UniProtKB (for functional annotation) and STRING (for protein–protein interaction network analysis), followed by structural modeling.
Results: Protein P01284, belonging to the glucagon family and consisting of 75 amino acids (with a molecular weight of 8.5 kDa), was identified. Based on domain analysis and protein–protein interaction profiling, the protein is presumed to exhibit vasoactive properties.
Conclusion: The findings support the utility of in silico analysis for predicting the bioactivity of food-derived proteins and justify further in vivo investigation of P01284 as a nutraceutical antihypertensive agent.
About the Authors
Elena S. RazumovskayaRussian Federation
Irina S. Milentyeva
Russian Federation
References
1. Budanova A.A., Shchukovskaya T.N. In silico Research at the Stages of Designing Modern Means
2. for Prevention of Plague (by the Example of Subunit Vaccines). Problems of Particularly
3. Dangerous Infections.2022;(3):6-13.(In Russ.)https://doi.org/10.21055/0370-1069-2022-3-6
4. Vostrikova N.L., Chernukha I.M., Khvostov D.V. METHODOLOGICAL ASPECTS OF
5. IDENTIFICATION OF TISSUE-SPECIFIC PROTEINS AND PEPTIDES FORMING THE
6. CORRECTIVE PROPERTIES OF INNOVATIVE MEAT PRODUCTS. Theory and practice
7. of meat processing. 2018;3(3):36-55. https://doi.org/10.21323/2414-438X-2018-3-3-36-55
8. Epifanov R.Yu., Afonnikov D.A. BioNet: Peptide Mass-Spectrum Prediction. Vestnik NSU.
9. Series: Information Technologies. 2020;18(2):31-42. (In Russ.)
10. https://doi.org/10.25205/1818-7900-2020-18-2-31-42Зверев, С. В. (2021) Оптимизация
11. пищевых композиций по профилю идеального белка / С. В. Зверев, В. И. Карпов, М. А.
12. Никитина // Пищевые системы. – 2021. – Т. 4, № 1. – С. 4-11.
13. http://dx.doi.org/10.21323/2618-9771-2021-4-1-4-11.
14. Kruchinin AG., Bolshakova EI. Hybrid Strategy of Bioinformatics Modeling (in silico): Biologically Active Peptides of Milk Protein. Food Processing: Techniques and Technology. 2022;52(1):46–57. https://doi.org/10.21603/2074- 9414-2022-1-46-57
15. Kurbanova M. G., Voroshilin R.A., Matyushev V.V., Kalugina O. I., Mukhim-zade M., (2023) Using the in silico method to predict the bioactive peptides properties / M.G. Kurbanova [et al.] // Bulliten KrasSAU. 2023;(2): 236–241. (In Russ.). DOI: 10.36718/1819-4036-2023-2-236-241.
16. Peskova E. V. (2022) Bioinformatic analysis of proteins using databases
17. data (literature review) / E. V. Peskova, N. I. Bulatova // Health risk analysis - 2022. Fundamental and applied aspects of ensuring the sanitary and epidemiological well-being of the population: Proceedings of the international meeting on environment and health RISE-2022. Materials of the XII All-Russian scientific and practical conference with international participation. In two volumes, Perm, May 18–20, 2022. Volume 1. – Perm: Perm National Research Polytechnic University, 2022. – P. 398-402.
18. Polishchuk, Ekaterina. (2024). Benefits and Constraints of In Silico Tools for Analyzing Protegrin-
19. Characteristics / E. Polishchuk // New technologies in medicine, biology, pharmacology
20. and ecology: materials of the International Conference NT+ME `24, Crimea, Yalta-Gurzuf,
21. June 02–09, 2024. – Moscow: Limited Liability Company “Institute of New Information
22. Technologies”, 2024. – P. 210-216.
23. Ryazantseva K. A. (2020) Prospects for bioinformatics for research food bioactive peptides using
24. in silico tools / K. A. Ryazantseva, E. Yu. Agarkova // News of higher educational
25. institutions. Food technology. – 2020. – No. 4(376). – P. 8-12.
26. http://dx.doi.org/10.26297/0579-3009.2020.4.2.
27. Razumovskaya E.S., Milentyeva I.S. Studying the fractional composition of meat protein using
28. the method vertical electrophoresis / Razumovskaya E.S., Milentyeva I.S. // Technology and
29. merchandising of innovative food products. – 2025. – No. 1(90). – P. 3-7.
30. Tikhonov S.L., Tikhonova N.V., Ulitina E.A., 2023, Comparative evaluation of the biological
31. effect of native and synthesized peptides, Vestnik of Immanuel Kant Baltic Federal
32. University. Series: Natural and Medical Sciences, №3. P. 106—117. doi: 10.5922/gikbfu-2023-3-8.
33. Khlebnikova, A. Yu. (2023) Analysis of the current state of protein use and peptides in the food
34. industry / A. Yu. Khlebnikova, M. G. Kurbanova // Food health-saving technologies:
35. Collection of abstracts of the II International Symposium dedicated to the 50th anniversary of
36. KemSU, Kemerovo, November 02–03, 2023. – Kemerovo: Kemerovo State University, 2023.
37. – P. 427-430.
38. Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. (2017) Proteomics:
39. Technologies and Their Applications. J Chromatogr Sci. 2017 Feb;55(2):182-196. http://dx.doi.org/10.1093/chromsci/bmw167.
40. Basu S, Naha A, Veeraraghavan B, Ramaiah S, Anbarasu A. In silico structure evaluation of BAG3
41. and elucidating its association with bacterial infections through protein-protein and host-
42. pathogen interaction analysis. J Cell Biochem. 2022 Jan;123(1):115-127. doi:
43. /jcb.29953. Epub 2021 May 17. PMID: 33998043.
44. Cao L, Coventry B, Goreshnik I, Huang B, Sheffler W, Park JS, Jude KM, Marković I, Kadam
45. RU, Verschueren KHG, Verstraete K, Walsh STR, Bennett N, Phal A, Yang A, Kozodoy L,
46. DeWitt M, Picton L, Miller L, Strauch EM, DeBouver ND, Pires A, Bera AK, Halabiya S,
47. Hammerson B, Yang W, Bernard S, Stewart L, Wilson IA, Ruohola-Baker H, Schlessinger J,
48. Lee S, Savvides SN, Garcia KC, Baker D. Design of protein-binding proteins from the target
49. structure alone. Nature. 2022 May;605(7910):551-560. doi: 10.1038/s41586-022-04654-9.
50. Epub 2022 Mar 24. PMID: 35332283; PMCID: PMC9117152.
51. Chanajon P, Hamzeh A, Tian F, Roytrakul S, Oluwagunwa OA, Kadam D, Aluko RE, Aueviriyavit
52. S, Wongwanakul R, Yongsawatdigul J. Hypotensive effect of potent angiotensin-I-converting
53. enzyme inhibitory peptides from corn gluten meal hydrolysate: Gastrointestinal digestion and
54. transepithelial transportation modifications. Food Chem. 2025 Jan 1;462:140953. Doi
55. /j.foodchem.2024.140953. Epub 2024 Aug 23. PMID: 39216374.
56. Kelly R.T., (2020) Single-cell Proteomics: Progress and Prospects. Mol Cell
57. Proteomics. 2020 Nov;19(11):1739-1748. http://dx.doi.org/10.1074/mcp.R120.002234.
58. Kynast JP, Schwägerl F, Höcker B. ATLIGATOR: editing protein interactions with an atlas-based
59. approach. Bioinformatics. 2022 Nov 30;38(23):5199-5205. doi:
60. /bioinformatics/btac685. PMID: 36259946; PMCID: PMC9710554.
61. Kynast JP, Höcker B. Atligator Web: A Graphical User Interface for Analysis and Design of
62. Protein-Peptide Interactions. Biodes Res. 2023 May 4;5:0011. doi: 10.34133/bdr.0011.
63. PMID: 37849459; PMCID: PMC10521702.
64. Lin K, Zhang L-W, Han X, Xin L, Meng Z-X, Gong P-M, et al. (2018) Yak milk
65. casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chemistry. 2018;254:340–347. https://doi.org/10.1016/j.foodchem.2018.02.051
66. Lockridge O., Schopfer L.M., (2023) Review: Organophosphorus toxicants, in
67. addition to inhibiting acetylcholinesterase activity, make covalent adducts on multiple proteins and promote protein crosslinking into high molecular weight aggregates. Chem Biol Interact. 2023 May 1;376:110460. http://dx.doi.org/10.1016/j.cbi.2023.110460.
68. Mathew B, Bathla S, Williams KR, Nairn AC. Deciphering Spatial Protein-Protein Interactions in
69. Brain Using Proximity Labeling. Mol Cell Proteomics. 2022 Nov;21(11):100422. doi:
70. /j.mcpro.2022.100422. Epub 2022 Oct 2. PMID: 36198386; PMCID: PMC9650050.
71. Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense.
72. Front Plant Sci. 2022 Dec 14;13:1035573. doi: 10.3389/fpls.2022.1035573. PMID:
73. ; PMCID: PMC9795235.
74. Minkiewicz P., Iwaniak A., Darewicz M. BIOPEP-UWM virtual—a novel database of food-
75. derived peptides with in silico-predicted biological activity //Applied Sciences. – 2022. – Т.
76. – №. 14. – С. 7204.
77. Perkons I., Varunjikar M.S., Rasinger J.D., (2023) Unveiling the potential of
78. proteomics in addressing food and feed safety challenges. EFSA J. 2023 Nov 30;21(Suppl 1) :e211013. http://dx.doi.org/ 10.2903/j.efsa.2023.e211013.
79. Rodrigues R.T., Chizzotti M.L., Vital C.E., Baracat-Pereira M.C., Barros E., Busato
80. K.C., Gomes R.A., Ladeira M.M., Martins T.D. (2017) Differences in Beef Quality between Angus (Bos taurus taurus) and Nellore (Bos taurus indicus) Cattle through a Proteomic and Phosphoproteomic Approach. PLoS One. 2017 Jan 19;12(1):e0170294. http://dx.doi.org/10.1371/journal.pone.0170294.
81. Rozanova S., Barkovits K., Nikolov M., Schmidt C., Urlaub H., Marcus K. (2021)
82. Quantitative Mass Spectrometry-Based Proteomics: An Overview. Methods Mol Biol. 2021; 2228:85-116. http://dx.doi.org/10.1007/978-1-0716-1024-4_8.
83. Seychell, B. C.; Beck, T. Beilstein J. Org. Chem. 2021, 17, 1–10. doi:10.3762/bjoc.17.1
84. Sekar G, Ojoawo A, Moldoveanu T. Protein-protein and protein-lipid interactions of pore-forming
85. BCL-2 family proteins in apoptosis initiation. Biochem Soc Trans. 2022 Jun 30;50(3):1091-
86. doi: 10.1042/BST20220323. PMID: 35521828; PMCID: PMC9310348.
87. Suo Q, Yue Y, Wang J, Wu N, Geng L, Zhang Q. Isolation, identification and in vivo
88. antihypertensive effect of novel angiotensin I-converting enzyme (ACE) inhibitory peptides
89. from Spirulina protein hydrolysate. Food Funct. 2022 Aug 30;13(17):9108-9118. doi:
90. /d2fo01207c. PMID: 35946851.
91. Toldrá F, Reig M, Mora L. Management of meat by- and co-products for an improved meat
92. processing sustainability. Meat Sci. 2021 Nov;181:108608.
93. doi: 10.1016/j.meatsci.2021.108608. Epub 2021 Jun 16. PMID: 34171788.
94. Tu M, Qiao X, Wang C, Liu H, Cheng S, Xu Z, et al. (2021) In vitro and in silico
95. analysis of dual-function peptides derived from casein hydrolysate. Food Science and Human Wellness. 2021;10(1):32–37. https://doi.org/10.1016/j.fshw.2020.08.014
96. Wang J., Fu Y., Su T., Wang Y., Soladoye O.P., Huang Y., Zhao Z., Zhao Y., Wu
97. W. (2023) A Role of Multi-Omics Technologies in Sheep and Goat Meats: Progress and Way Ahead. Foods. 2023 Nov 9;12(22):4069. http://dx.doi.org/10.3390/foods12224069.
98. Wang H., Chen M., Zhang X., Xie S., Qin J., Li J. Peptide-based PROTACs: Current Challenges
99. and Future Perspectives // Current Medicinal Chemistry. - 2024. - Т. 31. - №2. - C. 208-222.
100. doi: 10.2174/0929867330666230130121822
101. Wu K, Jiang H, Hicks DR, Liu C, Muratspahic E, Ramelot TA, Liu Y, McNally K, Gaur A,
102. Coventry B, Chen W, Bera AK, Kang A, Gerben S, Lamb MY, Murray A, Li X, Kennedy
103. MA, Yang W, Schober G, Brierley SM, Gelb MH, Montelione GT, Derivery E, Baker D.
104. Sequence-specific targeting of intrinsically disordered protein regions. bioRxiv [Preprint].
105. Sep 2:2024.07.15.603480. doi: 10.1101/2024.07.15.603480. PMID: 39071356;
106. PMCID: PMC11275711.
107. Zheng SL, Luo QB, Suo SK, Zhao YQ, Chi CF, Wang B. Preparation, Identification, Molecular
108. Docking Study and Protective Function on HUVECs of Novel ACE Inhibitory Peptides
109. from Protein Hydrolysate of Skipjack Tuna Muscle. Mar Drugs. 2022 Feb 27;20(3):176.
110. doi: 10.3390/md20030176. PMID: 35323475; PMCID: PMC8954214.
Supplementary files
Review
For citations:
Razumovskaya E.S., Milentyeva I.S. In Silico Approaches for Identifying the Structure of a Glucagon Family Protein. Storage and Processing of Farm Products. 2025;33(2). https://doi.org/10.36107/spfp.2025.2.624