Possibility Evaluation of Using Supercritical Carbon Dioxide Extraction in Complex Processing of Algae
https://doi.org/10.36107/spfp.2025.1.630
Abstract
Introduction: Algae are a valuable source of various biologically active substances (BAS), which are widely used in medicine, food industry, cosmetology and other areas due to their antioxidant, anti-inflammatory and immunomodulatory properties. Despite the significant potential of algae, there are currently no comprehensive technological solutions that ensure maximum extraction of BAS from this type of raw material using carbon dioxide extraction, and there is no information on the chemical composition and biological activity of algal CO2 extracts. The development of new approaches, including optimization of BAS extraction processes, will be a key factor in increasing the efficiency of algae use and expanding the areas of their application.
Purpose: To evaluate the possibility of sequential use of CO2 and water extractions for the purpose of obtaining polysaccharides during the complex processing of macrophyte algae, which are used in the food industry as thickeners and gelling agents, as well as CO2 extracts containing substances with biological activity.
Materials and Methods: Brown and red algae of the following species were used to get the extracts: Ascophyllum nodosum, Fucus distichus, F. vesiculosus, Ahnfeltia plicata, A. tobuchiensis, Vertebrata fucoides. CO2 extracts of algae were obtained using the KOERS1 unit. The composition, antimicrobial and antioxidant properties of the CO2 extracts were compared with alcohol and ether extracts of algae. The composition of the algae extracts was analyzed using modern analytical equipment (Shimadzu GCMS-TQ 8040 gas chromatography mass spectrometry system, Agilent 8890GC System Custom gas chromatograph, Cary 3500 Compact UV-Vis spectrophotometer) using generally accepted techniques. The antimicrobial properties of algae extracts were tested against Salmonella abony, Candida albicans, Proteus vulgaris, Enterococcus faecalis, Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli using the disk diffusion method. The antioxidant activity was assessed in accordance with Russian Patent No. 2170930. Polysaccharides were isolated from algae and meal formed after CO2 extraction by their aqueous extraction at temperatures of 98 and 120°C in a neutral and alkaline environment.
Results: It was found that the composition of the obtained CO2 extracts of algae is more influenced by the extraction conditions than by the type of algae used. In terms of qualitative composition, CO2 extracts of brown and red macrophyte algae differ mainly in two components: gamma-sitosterol and stigmasta-5,24(28)-dien-3-ol, (3.beta.,24Z). Water-soluble polysaccharides isolated from algal meal were practically no different in their physicochemical characteristics from those isolated from algae.
Conclusion: The possibility of sequential use of CO2 and water extraction for the extraction of BAS and polysaccharides in the complex processing of algae was proved.
Keywords
About the Authors
Tatiana A. IgnatovaRussian Federation
Timur M. Baygildiev
Russian Federation
Marina O. Berezina
Russian Federation
Yulia. A. Baskakova
Russian Federation
Larisa K. Plakun
Russian Federation
References
1. Berezina, M.O., (2024) Status of stocks and prospects for the use of algae of the White Sea. Proceedings of the International scientific and practical conference dedicated to the 110th anniversary of the St. Petersburg branch of the Russian State Scientific Center of Fisheries and Oceanography (State Research Institute of Lake and River Fisheries named after L.S. Berg), St. Petersburg, October 23-24, 2024 / ed. K.V. Kolonchin [et al.]. Moscow: VNIRO Publishing House, 66-69. (In Russ.)
2. Grunina, E. N., Belova I. V., Glumova, N. V. (2020) Plants of the genus Syringa L. - promising raw materials for the production of essential oil products. Tavrichesky Bulletin of Agrarian Science, 2(22), 28-36. (In Russ.)
3. Evseeva, N. V., Matyushkin, V. B., Berezina, M. O., Melnik, R. A., Levitsky, A. L., Vlasov, D. O., Saenko, E. M., Zhiltsova , L. V., Bely, M. N., Dulenin, A. A., Prokhorova, N. Yu., Sologub, D. O., Botnev D. A. (2024), etc. State of resources and fishing of algae and sea grasses in the seas of Russia in 2000–2020 VNIRO WORKS, 195, 232-248. (In Russ.)
4. Ignatova, T. A., Podkorytova, A. V., Evseeva, N. V., Baskakova, Yu. A., Mulyanova, M. P. (2023) Red algae of the White Sea: assessment of their potential as raw materials for obtaining pharmaceutical substances with antimicrobial action. Fishery complex of Russia: problems and development prospects. Proceedings of the I International scientific and practical conference (March 28-29, 2023, Moscow), FGBNU "VNIRO" / Edited by Kolonchin K. V., Bulatov O. A., Kharenko E. N., Truba A. S. M.: Publishing house of VNIRO, 353-358. (In Russ.)
5. Ignatova, T. A., Podkorytova, A. V. (2022) Quality management of gelling polysaccharides extracted from Ahnfeltia plicata of the White Sea. Modern problems and prospects for the development of the fisheries complex: Proceedings of the X International Scientific and Practical Conference of Young Scientists and Specialists, 331-333. (In Russ.)
6. Kates, M. (1975) Technique of Lipidology. Isolation, Analysis and Identification of Lipids. MIR Publishing House. Moscow, 323 p. (In Russ.)
7. Kudryashov, A. P., Ditchenko, T. I., Molchan, O. V., Smolich, I. I., Yakovets, O. G. (2011) Plant Physiology: Laboratory Workshop for Students of the Biological Faculty. Minsk: BSU, 76 p. (In Russ.)
8. Mironov, O. A., Mironov, O. G., Muravyova, I. P. (2021) Lipid content in macrophytes of different areas of the coastal waters of Sevastopol (Black Sea). Proceedings of the Karadag Scientific Station named after T. I. Vyazemsky - Nature Reserve of the Russian Academy of Sciences. (In Russ.)
9. Naumov, I. A., Burkova, E. A., Kanarskaya, Z. A., Kanarsky, A. V. (2015) Algae - a source of biopolymers, biologically active substances and a substrate in biotechnology. Part 1. Biopolymers of algae tissue cells. Bulletin of the Technological University, 18, 1, 184-188. (In Russ.)
10. Podkorytova, A. V., Ignatova, T. A. (2022) Marine red algae - an inexhaustible source of biologically active substances for medicine and pharmaceuticals. Proceedings of VNIRO, 188, 151-165. (In Russ.)
11. Rubchevskaya, L. P., Ushanova, V. M., Zhuravleva, L. N. (2005) Biologically active substances of carbon dioxide and propane-butane extracts of wood greenery. Russ. Chem. J. (Journal of the Russian Chemical Society named after D. I. Mendeleyev), XLVIII, 3, 80-83. (In Russ.)
12. Khotimchenko, S. V., Gusarova, I. S. (2004) Red algae of Peter the Great Bay as a source of arachidonic and eicosapentaenoic acids. Biol. Seas, 30, 3, 215-218. (In Russ.)
13. Chupakhina G. N., Maslennikov P. V., Skripnik L. N., Chupakhina N. Yu., Feduraev P. V. Antioxidant properties of cultivated plants of the Kaliningrad region. Kaliningrad: Immanuel Kant Baltic Federal University, 145. (In Russ.)
14. Afifi, L., Danesh, M. J., Lee, K. M., Beroukhim, K., Farahnik, B., Ahn, R. S., Yan, D., Singh, R. K., Nakamura, M., Koo, J., & Liao, W. (2017) Dietary Behaviors in Psoriasis: Patient-Reported Outcomes from a U.S. National Survey. Dermatol. Ther, 7, 227–242. https://doi.org/10.1007/s13555-017-0183-4
15. Aslan, I., Ozcan, F., Karaarslan, T., Kirac, E., & Aslan, M. (2017) Decreased eicosapentaenoic acid levels in acne vulgaris reveals the presence of a proinflammatory state. Prostaglandins Other Lipid Mediat, 128-129, 1–7. https://doi.org/10.1016/j.prostaglandins.2016.12.001
16. Balk, E., Chung, M., Lichtenstein, A., Chew, P., Kupelnick, B., Lawrence, A., DeVine, D., & Lau, J. (2004) Effects of omega-3 fatty acids on cardiovascular risk factors and intermediate markers of cardiovascular disease. Evid Rep Technol Assess (Summ), 93, 1–6.
17. Capriotti, K., & Capriotti, J. A. (2012) Dimethyl sulfoxide: history, chemistry, and clinical utility in dermatology. J Clin Aesthet Dermatol, 5(9), 24-6.
18. Cárdeno, A., Aparicio-Soto, M., Montserrat-de la Paz, S., Bermudez, B., Muriana, F. J. G., & Alarcón-de-la-Lastra, C. (2015) Squalene targets pro- and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages. Journal of Functional Foods, 14, 779-790.
19. Chen, C.-Y. , & Chou, H.-N. (2002) Screening of red algae filaments as a potential alternative source of eicosapentaenoic acid. Marine Biotechnology, 4(2), 189-192. http://dx.doi.org/10.1007/s10126-002-0002-4
20. Cheung, P. C. K., Leung, A. Y. H., & Ang, P. O. (1998) Comparison of Supercritical Carbon Dioxide and Soxhlet Extraction of Lipids from a Brown Seaweed, Sargassum hemiphyllum (Turn.) C. Ag. Journal of Agricultural and Food Chemistry, 46, 4228.
21. Cid, U., Rodríguez-Seoane, P., Díaz-Reinoso, B., & Domínguez, H. (2021) Extraction of Fatty Acids and Phenolics from Mastocarpus stellatus Using Pressurized Green Solvents. Mar. Drugs, 19, 453. https://doi.org/10.3390/md19080453
22. Desbois, A. P., & Smith, V. J. (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol, 85, 1629–1642. https://doi.org/10.1007/s00253-009-2355-3
23. Georgiopoulou, I., Tzima, S., Louli, V., & Magoulas, K. (2022) Supercritical CO2 Extraction of High-Added Value Compounds from Chlorella vulgaris: Experimental Design, Modelling and Optimization. Molecules, 27, 5884. https://doi.org/10.3390/molecules27185884
24. Gonzalez-Rivera, M., Barragan-Galvez, J. C., Gasca-Martínez, D., Hidalgo-Figueroa, S., Isiordia-Espinoza, M., & Alonso-Castro, A. J. (2023) In Vivo neuropharmacological effects of neophytadiene. Molecules, 14;28(8), 3457. https://doi.org/10.3390/molecules28083457
25. Henry, G. E., Momin, R. A., Nair, M. G., & Dewitt, D. L. (2002) Antioxidant and cyclooxygenase activities of fatty acids found in food. J Agric Food Chem, 50, 2231–2234. https://doi.org/10.1021/jf0114381
26. Holdt, S. L., & Kraan, S. (2011) Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23, 543–597. https://doi.org/10.1007/s10811-010-9632-5
27. Huang, T.-H., Wang, P. W., Yang, S. C., Chou, W. L., & Fang, J. Y. (2018) Cosmetic and Therapeutic Applications of Fish Oil’s Fatty Acids on the Skin. Mar. Drugs, 16(8), 256. https://doi.org/10.3390/md16080256
28. Jaybhay, S. P., & Chate, P., & Ade, A. (2010) Isolation and identification of crude triacontanol from rice bran wax. Journal of Experimental sciences, 1 (2), 26.
29. Jung, J. Y., Kwon, H. H., Hong, J. S., Yoon, J. Y., Park, M. S., Jang, M. Y., & Suh, D. H. (2014) Effect of dietary supplementation with omega-3 fatty acid and gamma-linolenic acid on acne vulgaris: A randomised, double-blind, controlled trial. Acta Derm. Venereol, 94, 521–525. https://doi.org/10.2340/00015555-1802
30. Kumari, P., Kumar, M., Reddy, C. R. K., & Jha, B. (2013) Algal lipids, fatty acids and sterols. In: Functional Ingredients from Algae for Foods and Nutraceuticals. Cambridge: Woodhead Publishing Limited, 87–134. http://dx.doi.org/10.1533/9780857098689
31. Lee, D. Y-W., Lin, X., Paskaleva, E. E., Liu Y., Puttamadappa, S. S., Thornber, C., Drake, J. R., Habulin, M., Shekhtman, A., & Canki, M. (2009) Palmitic acid is a novel CD4 fusion inhibitor that blocks HIV entry and infection. AIDS Res Hum Retroviruses, 25, 1231–1241. https://doi.org/10.1089/aid.2009.0019
32. Lee, Y. S., Shin, K. H., Kim, B-K, & Lee, S. (2004) Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Archives Pharmacal Research, 27. 1120-1122. https://doi.org/10.1007/bf02975115
33. Li, Y., Naghdi, F. G., Garg, S., Adarme-Vega, T. C., Thurecht, K. J., Ghafor, W. A., Tannock, S., & Schenk, P. M. (2014) A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microbial Cell Factories, 13, 14. https://doi.org/10.1186/1475-2859-13-14
34. Lorenzen, J., Igl, N., Tippelt, M., Stege, A., Qoura, F.,
35. Sohling, U., & Brück, T. (2017) Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst Eng, 40, 911–918. https://doi.org/10.1007/s00449-017-1755-5
36. Machmudah, S., Diono, W., Kanda, H., & Goto, M. (2018) Supercritical Fluids Extraction of Valuable Compounds from Algae: Future Perspectives and Challenges. Engineering Journal, 22(5), 13-30. http://dx.doi.org/10.4186/ej.2018.22.5.13
37. Melnik, B. C. (2015) Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin. Cosmet. Investig. Dermatol, 8, 371–388. https://doi.org/10.2147/ccid.s69135
38. Mendes, R. L., Nobre, B. P., Cardoso, M. T., Pereira, A. P., & Palavra, A. F. (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta, 356, 328-334. https://doi.org/10.1016/S0020-1693(03)00363-3
39. Mercer, P., Armenta, R. E. (2011) Development in oil extraction from microalgae. European Journal of Lipid Science and Technology, 113(5), 539 – 547.
40. Metzger, P., & Largeau, C. (2004) Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology, 66(5), 486-96. https://doi.org/10.1007/s00253-004-1779-z
41. Obeid, S., Beaufilsa, N., Camyd, S., Takache, H., Ismail, A., & Pontalier, P.-Y. (2018) Supercritical carbon dioxide extraction and fractionation of lipids from freeze-dried microalgae Nannochloropsis oculata and Chlorella vulgaris. Algal Research, 34, 49-56. https://doi.org/10.1016/j.algal.2018.07.003
42. Ota, M., Watanabe, H., Kato, Y., Watanabe, M., Sato, Y., Smith, R. L., & Inomata, H. (2009) Carotenoid production from Chlorococcum littorale in photoautotrophic cultures with downstream supercritical fluid processing. J. Sep. Sci., 32, 2327–2335, https://doi.org/10.1002/jssc.200900154
43. Pereira, H., Barreira, L., Figueiredo, F., Custódio, L., Vizetto-Duarte, C., Polo, C., Rešek, E., Engelen, A., & Varela, J. (2012) Polyunsaturated fatty acids of marine macroalgae: Potential for nutritional and pharmaceutical applications. Mar. Drugs, 10, 1920–1935. https://doi.org/10.3390/md10091920
44. Plouguerné, E., M de Souza, L., Sassaki, G. L., Cavalcanti, J. F., Romanos, M. T. V., A P da Gama, B., Pereira, R. C., & Barreto-Bergter, E. (2013) Antiviral sulfoquinovosyldiacylglycerols (SQDGs) from the Brazilian brown seaweed Sargassum vulgare. Mar Drugs, 11, 4628–4640. https://doi.org/10.3390/md11114628
45. Pour Hosseini, S. R., Tavakoli O., & Sarrafzadeh M. H. (2017) Experimental optimization of SC-CO2extraction of carotenoids from Dunaliella salina. The Journal of Supercritical Fluids, 121, 89–95. https://doi.org/10.1016/j.supflu.2016.11.006
46. Prafulla, D. P., Kodanda, P. R. D., Wang, J., Deng, Q., & Deng, S. (2018) Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. The Journal of Supercritical Fluids, 135, 60-68. https://doi.org/10.1016/j.supflu.2017.12.019
47. Rodriguez-Amaya, D. B. (2001) A guide to carotenoid analysis in foods. Printed in the United States of America.
48. Romieu, I., Tellez-Rojo, M. M., Lazo, M., Manzano-Patino, A., Cortez-Lugo, M., Julien, P., Belanger, M. C., Hernandez-Avila, M., & Holguin, F. (2005) Omega-3 fatty acid prevents heart rate variability reductions associated with particulate matter. Am J Respir Crit Care Med, 172(12), 1534–1540. https://doi.org/10.1164/rccm.200503-372oc
49. Sajilata, M. G., Singhal, R. S., & Kamat, M. Y. (2008) Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. Journal of Food Engineering, 84, 321–26. https://doi.org/10.1016/j.jfoodeng.2007.05.028
50. Santana, А. S., Jesus, M. A., Larrayoz, M. A., & Filho R. M. (2012) Supercritical carbon dioxide extraction of algal lipids for the biodiesel production. Procedia Engineering, 42, 1755 – 1761. https://doi.org/10.1016/j.proeng.2012.07.569
51. Schacky, C. Von (2008) Omega-3 fatty acids: antiarrhythmic, proarrhythmic or both? Curr Opin Clin Nutr Metab Care, 11(2), 94–99. https://doi.org/10.1097/mco.0b013e3282f44bdf
52. Schacky, C. Von., & Harris, W. S. (2007) Cardiovascular benefits of omega-3 fatty acids. Cardiovasc Res, 73(2), 310–315. https://doi.org/10.1016/j.cardiores.2006.08.019
53. Schuhmann, H., Lim, D. K. Y., & Schenk, P. M. (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels, 3, 1-86. https://doi.org/10.4155/bfs.11.147
54. Sholokhova, A. Y., Matyushin, D. D., Grinevich O. I., Borovikova, S. A., & Buryak, A. K. (2023) Intelligent Workflow and Software for Non-Target Analysis of Complex Samples Using a Mixture of Toxic Transformation Products of Unsymmetrical Dimethylhydrazine as an Example. Molecules, 28, № 8, 3409. https://doi.org/10.3390/molecules28083409
55. Terme, N., Boulho, R., Kucma, J.-P., Bourgougnon, N., & Gilles, B. (2018) Radical scavenging activity of lipids from seaweeds isolated by solid-liquid extraction and supercritical fluids. Oilseeds and Fats, Crops and Lipids, 25(5), D505. https://doi.org/10.1051/ocl/2018054
56. Thomsen, B. J., Chow, E. Y., & Sapijaszko, M. J. (2020) The potential uses of omega-3 fatty acids in dermatology: A review. J. Cutan. Med. Surg, 24, 481–494. https://doi.org/10.1177/1203475420929925
57. Vedhagiri, K., Manilal, A., Valliyammai, T., Shanmughapriya, S., Sujith S., Selvin, J. & Natarajaseenivasan, K. (2009) Antimicrobial potential of a marine seaweed Asparagopsis taxiformis against Leptospira javanica isolates of rodent reservoirs. Annals of Microbiol, 59, 431–437.
58. Vertuani, S., Ziosi, P., Solaroli, N., Buzzoni, V., Carli, M., Lucchi, E., Valgimigli, L., Baratto, G., Manfredini, S. (2003) Determination of antioxidant efficacy of cosmetic formulations by non-invasive measurements. Ski Res Technol, 9, 245–253. https://doi.org/10.1034/j.1600-0846.2003.00018.x
59. Wang, L., Pan, B., Sheng, J., Xu, J., & Hu, Q. (2007) Antioxidant activity of Spirulina platensis extracts by supercritical carbon dioxide extraction. Food Chemistry, 105, 36-41. https://doi.org/10.1016/j.foodchem.2007.03.054
60. Zubia, M., Robledo, D., & Freile-Pelegrín, Y. (2007) Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. Journal of Applied Phycology, 19. 449–458.
Supplementary files
Review
For citations:
Ignatova T.A., Baygildiev T.M., Berezina M.O., Baskakova Yu.A., Plakun L.K. Possibility Evaluation of Using Supercritical Carbon Dioxide Extraction in Complex Processing of Algae. Storage and Processing of Farm Products. 2025;33(1):95-115. (In Russ.) https://doi.org/10.36107/spfp.2025.1.630