Гелевые комплексы: принципы создания, материалы и технологии для инкапсулирования антоцианов (Обзор предметного поля)
https://doi.org/10.36107/spfp.2025.3.645
Abstract
Введение: Пищевой гелевый комплекс можно определить, как сферическую сложную трёхмерную коллоидную систему, в которой активные вещества (функциональные пищевые ингредиенты) могут быть диспергированы или заключены в ядро, окружённое непрерывной защитной оболочкой. Функциональные пищевые ингредиенты эффективно инкапсулируются и используются для контролируемой пероральной доставки с помощью гелевых комплексов на основе биополимеров.
Цель: Проанализировать отечественные и зарубежные разработки о принципах изготовления, материалах, характеристике и практического применения гелевых комплексов для инкапсулирования функциональных пищевых ингредиентов (на примере инкапсулирования антоцианов) для определения перспективных направлений дальнейших исследований.
Материалы и методы. При составлении обзора предметного поля были изучены российские и зарубежные научные публикации, посвященные принципам изготовления, материалам, характеристике и практическому применению гелевых комплексов для создания инкапсулированных форм антоцианов, опубликованные в период с 2001 по 2025 год. Систематический поиск научной литературы был проведен по базам данных РИНЦ, PubMed, Science Direct и в системах Google Scholar.
Результаты: Выявлено, что наиболее популярными инкапсуляторами антоцианов являются такие гидроколлоиды как мальтодекстрин, сывороточный протеин, изолят соевого белка, а также в последнее время у исследователей наблюдается тенденция к использованию комбинаций биополимеров взамен отдельных полимеров из-за их более высокой эффективности инкапсуляции и более низкой стоимости. Для инкапсулирования биоактивных соединений в гелевые комплексы используются различные способы, учитывающие природу готовых комплексов, их назначение, природу основного материала, место высвобождения, размер частиц и т.д. Показано, что при разработке гелевых комплексов необходимо учитывать основные принципы изготовления: состав гелевых комплексов, механизмы высвобождения, структуру и размер, биосовместимость и стабильность.
Выводы: Анализ публикаций отечественных и зарубежных исследователей, посвящённых принципам изготовления, материалам, характеристике и практическому применению гелевых комплексов для инкапсулирования функциональных пищевых ингредиентов (на примере инкапсулирования антоцианов), показал актуальность проведения подобных исследований. Дальнейшие исследования в области более эффективных производственных процессов должны быть направлены на разработку новых подходов к стабилизации натуральных растительных пигментов с помощью гелевых комплексов для расширения их применения в пищевой промышленности.
About the Author
Наталия НеповинныхRussian Federation
References
1. Banerjee, S. Food gels: gelling process and new applications / S. Banerjee, S. Bhattacharya // Critical Reviews in Food Science and Nutrition. – 2012. - № 52 (4). - Р. 334-346. 10.1080/10408398.2010.500234
2. Li, Q. Fabrication and characterization of Ca (II)-alginate-based beads combined with different polysaccharides as vehicles for delivery, release and storage of tea polyphenols / Q. Li, M. Duan, D. Hou, X. Chen, J. Shi, W. Zhou // Food Hydrocolloids. – 2021. – V. 112. – Article 106274. 10.1016/j.foodhyd.2020.106274
3. Maleki, G. Applications of chitosan-based carrier as an encapsulating agent in food industry / G. Maleki, E.J. Woltering, M.R. Mozafari // Trends in Food Science and Technology. – 2022. – V. 120. - Р. 88-99. 10.1016/j.tifs.2022.01.001
4. Saqib, M.N. Customization of liquid-core sodium alginate beads by molecular engineering / M.N. Saqib, S. Ahammed, F. Liu, F. Zhong // Carbohydrate Polymers. – 2022. – V. 284. – Article 119047. 10.1016/j.carbpol.2021.119047
5. Karimi, S. Magnetic alginate/glycodendrimer beads for efficient removal of tetracycline and amoxicillin from aqueous solutions / S. Karimi, H. Namazi // International Journal of Biological Macromolecules. – 2022. – V. 205. - Р. 128-140. 10.1016/j.ijbiomac.2022.02.066
6. McClements, D.J. Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability / D.J. McClements // Food Hydrocolloids. – 2017. – V. 68. - Р. 238-245. 10.1016/j.foodhyd.2016.05.037
7. Cao, Y. Design principles of food gels / Y. Cao, R. Mezzenga // Nature Food. – 2020. - № 1 (2). - Р. 106-118. 10.1038/s43016-019-0009-x
8. Kharkar, P.M. Designing degradable hydrogels for orthogonal control of cell microenvironments / P.M. Kharkar, K.L. Kiick, A.M. Kloxin // Chemical Society Reviews. – 2013. – V. 42 (17). - Р. 7335-7372. 10.1039/c3cs60040h
9. Redaelli, F. Synthesis and processing of hydrogels for medical applications / F. Redaelli, M. Sorbona, F. Rossi // Bioresorbable polymers for biomedical applications: From fundamentals to translational medicine, Elsevier Ltd (2017). 10.1016/B978-0-08-100262-9.00010-0
10. Đorđević, V. Trends in encapsulation technologies for delivery of food bioactive compounds / V. Đorđević, B. Balanč, A. Belščak-Cvitanović, S. Lević, K. Trifković, A. Kalušević, V. Nedović // Food Engineering Reviews. 2014. - № 7. 10.1007/s12393-014-9106-7
11. Shahidi, F. Food and bioactive encapsulation / F. Shahidi, P. Ambigaipalan, A. Abad, R.B. Pegg // Handbook of food preservation (2020), pp. 529-596. 10.1201/9780429091483-38
12. Li, D. Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends / D. Li, Z. Wei, C. Xue // Comprehensive Reviews in Food Science and Food Safety. – 2021. - № 20 (6). - Р. 5345-5369. 10.1111/1541-4337.12840
13. Li, H. Designing delivery systems for functional ingredients by protein/polysaccharide interactions / H. Li, T. Wang, Y. Hu, J. Wu, P. Van der Meeren // Trends in Food Science and Technology. – 2022. – V. 119. - Р. 272-287. 10.1016/j.tifs.2021.12.007
14. Saifullah, M. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review / M. Saifullah, M.R. Islam Shishir, R. Ferdowsi, M.R. Tanver Rahman, Q. Van Vuong // Trends in Food Science and Technology. – 2019. – V. 86. - Р. 230-251. 10.1016/j.tifs.2019.02.030
15. Saqib, M.N. Phenolic acids / M.N. Saqib, M.R. Tanver Rahman // J. Kour, G.A. Nayik (Eds.), Nutraceuticals and health care, Elsevier. - 2022, Р. 303-316. 10.1016/B978-0-323-89779-2.00014-4
16. Tikhonov, S.L. Encapsulation of a biopeptide to ensure stability under the action of peptidases / S.L. Tikhonov, N.V. Tikhonova // Scientific and Technical Bulletin: Technical systems in agriculture. - 2023. - № 3 (19). - P. 10-14.
17. A method for microencapsulating oils containing polyunsaturated fatty acids for use in functional food products / V.S. Ilyina, O.B. Sokolova, E.D. Shuvatova, P. Allokh, R.M. Melchakov, A.I. Lepeshkin, I.V. Alexandrova, D.A. Baranenko // Polzunovsky Bulletin. - 2023. - № 2. - Р. 7-14.
18. Goff, H.D. The role of hydrocolloids in the development of food structure / H.D. Goff, Q. Guo // N. Fotis, Aris Spyropoulos, Ian Lazidis (Eds.), Handbook of Food Structure Development, The Royal Society of Chemistry. - 2020, Р. 1-28. 10.1039/9781788016155-00001
19. Food chemistry. Hydrocolloids: studies. handbook for universities / L.V. Donchenko, N.V. Sokol, E.A. Krasnoselova; edited by L.V. Donchenko. – 2nd ed. ispr. and add. – M.: Yurayt Publishing House, 2019 – 180 p. – (Series: Universities of Russia).
20. Ptichkin, I.I. Food polysaccharides: structural levels and functionality / I.I. Ptichkin, N.M. Ptichkina. Saratov: State Unitary Enterprise "Tipografiya № 6", 2012. 96 p.
21. Stribiţcaia, E. Tribology and rheology of bead-layered hydrogels: Influence of bead size on sensory perception / E. Stribiţcaia, E.M. Krop, R. Lewin, M. Holmes, A. Sarkar // Food Hydrocolloids. – 2020. – V. 104. 10.1016/j.foodhyd.2020.105692
22. Seisun, D. Strides in food texture and hydrocolloids / D. Seisun, N. Zalesny // Food Hydrocolloids. – 2021. – V. 117. – Article 106575. 10.1016/j.foodhyd.2020.106575
23. Wong, S.K. In vitro digestion and swelling kinetics of thymoquinone-loaded pickering emulsions incorporated in alginate-chitosan hydrogel beads / S.K. Wong, D. Lawrencia, J. Supramaniam, B.H. Goh, S. Manickam, T.W. Wong, S.Y. Tang // Frontiers in Nutrition. – 2021. - № 8. - Р. 1-14. 10.3389/fnut.2021.752207
24. Mackie, A. Interaction of food ingredient and nutraceutical delivery systems with the human gastrointestinal tract / A. Mackie // Encapsulation technologies and delivery systems for food ingredients and nutraceuticals, Elsevier – 2012, Р. 49-70. 10.1533/9780857095909.1.49
25. Corstens, M.N. Emulsion-alginate beads designed to control in vitro intestinal lipolysis: Towards appetite control / M.N. Corstens, C.C. Berton-Carabin, P.T. Elichiry-Ortiz, K. Hol, F.J. Troost, A.A.M. Masclee, K. Schroën // Journal of Functional Foods. – 2017. – V. 34. - Р. 319-328. 10.1016/j.jff.2017.05.003
26. US 6319507. United states: US Patent. Retrieved / P.E. Delrieu, L. Ding, 2001. https://www.freepatentsonline.com/6319507.html
27. Noreen, A. Natural polymers as constituents of bionanocomposites / A. Noreen, S. Sultana, T. Sultana, S. Tabasum, K.M. Zia, Z. Muzammil, S. Sultana // Bionanocomposites. – 2020. - Р. 55-85. 10.1016/B978-0-12-816751-9.00003-9
28. Sharma, M. Entrapment of a-amylase in agar beads for biocatalysis of macromolecular substrate / M. Sharma, V. Sharma, D.K. Majumdar // International Scholarly Research Notices. – 2014. - Р. 1-8. 10.1155/2014/936129
29. Stanley, N.F. Agar / N.F. Stanley // Food polysaccharides and their applications: Second edition (2nd ed.), CRC Press. - 2006, Р. 186-204. 10.1201/9781420015164
30. Cao, L. Egg-box model-based gelation of alginate and pectin: A review / L. Cao, W. Lu, A. Mata, K. Nishinari, Y. Fang // Carbohydrate Polymers. – 2020. – V. 242. – Article 116389. 10.1016/j.carbpol.2020.116389
31. Nordgård, C.T. Alginates / C.T. Nordgård, K.I. Draget // G.O. Phillips, P.A. Williams (Eds.), Handbook of hydrocolloids (Third Edit), Woodhead Publishing. - 2021, Р. 805-829. 10.1016/B978-0-12-820104-6.00007-3
32. Saqib, M.N. Thermo-mechanical response of liquid-core beads as affected by alginate molecular structure / M.N. Saqib, F. Liu, M. Chen, S. Ahammed, X. Liu, F. Zhong // Food Hydrocolloids. – 2022. – V. 131. – Article 107777. 10.1016/j.foodhyd.2022.107777
33. Ergun, R. Cellulose / R. Ergun, J. Guo, B. Huebner-Keese // Encyclopedia of Food and Health, Elsevier. - 2016, Р. 694-702. 10.1016/B978-0-12-384947-2.00127-6
34. Ibrahim, S. Biopolymers from crop plants / S. Ibrahim, O. Riahi, S.M. Said, M.F.M. Sabri, S. Rozali // Reference module in materials science and materials engineering. – 2019. 10.1016/B978-0-12-803581-8.11573-5
35. Nie, G. Cellulose-based hydrogel beads: Preparation and characterization / G. Nie, Y. Zang, W. Yue, M. Wang, A. Baride, A. Sigdel, S. Janaswamy // Carbohydrate Polymer Technologies and Applications. – 2021. - № 2. – Article 100074. 10.1016/j.carpta.2021.100074
36. Rakhshaei, R. Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties / R. Rakhshaei, H. Namazi, H. Hamishehkar, M. Rahimi // International Journal of Biological Macromolecules. – 2020. – V. 150. - Р. 1121-1129. 10.1016/j.ijbiomac.2019.10.118
37. BeMiller, J.N. Carrageenans / J.N. BeMiller // Carbohydrate chemistry for food scientists, Elsevier. - 2019, Р. 279-291. 10.1016/B978-0-12-812069-9.00013-3
38. Keppeler, S. Cross-linked carrageenan beads for controlled release delivery systems / S. Keppeler, A. Ellis, J.C. Jacquier // Carbohydrate Polymers. – 2009. - № 78 (4). – Р. 973-977. 10.1016/j.carbpol.2009.07.029
39. Yermak, I.M. Carrageenan gel beads for echinochrome inclusion: Influence of structural features of carrageenan / I.M. Yermak, V.I. Gorbach, I.A. Karnakov, V.N. Davydova, E.A. Pimenova, D.А. Chistyulin, V.P. Glazunov // Carbohydrate Polymers. – 2021. – V. 272. – Article 118479. 10.1016/j.carbpol.2021.118479
40. Eskin, M. Seed polysaccharide gums / M. Eskin, S. Ikeda, S. Cui // C.G. Biliaderis, M.S. Izydorczyk (Eds.), Functional Food Carbohydrates, Florida: CRC Press. - 2007, Р. 127-165. 10.1201/9781420003512.ch4
41. Theocharidou, A. The role of guar gum on sensory perception, on food function, and on the development of dysphagia supplements – A review / A. Theocharidou, I. Mourtzinos, C. Ritzoulis // Food Hydrocolloids for Health. – 2022. - № 2. – Article 100053. 10.1016/j.fhfh.2022.100053
42. Sutherland, I.W. Biotechnology of microbial polysaccharides in food / I.W. Sutherland // K. Shetty, G. Paliyath, A. Pometto, E. Levin (Eds.), Food biotechnology (2nd ed.), CRC Press, Boca Raton, FL, 2007. -Р. 193-220.
43. Eltayeb, I.B. Effect of gum arabic on the absorption of a single oral dose of amoxicillin in healthy Sudanese volunteers / I.B. Eltayeb, A.I. Awad, M.A. Elderbi, S.A. Shadad // The Journal of Antimicrobial Chemotherapy. – 2004. - № 54 (2). – Р. 577-578. 10.1093/jac/dkh372
44. Guo, L. Konjac glucomannan molecular and rheological properties that delay gastric emptying and improve the regulation of appetite / L. Guo, W. Yokoyama, M. Chen, F. Zhong // Food Hydrocolloids. – 2021. – V. 120. – Article 106894. 10.1016/j.foodhyd.2021.106894
45. Yuan, Yang Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery / Yang Yuan, Z.-Y. Kong, Y.-E. Sun, Q.-Z. Zeng, X.-Q. Yang // LWT. – 2017. – V. 75. - Р. 171-179. 10.1016/j.lwt.2016.08.045
46. Schorsch, C. Viscoelastic properties of xanthangalactomannan mixtures: comparison of guar gum with locust bean gum / C. Schorsch, C. Garnier, J.-L. Doublier // Carbohydrate Polymers. – 1997. - № 34 (3). - Р. 165-175. 10.1016/S0144-8617(97)00095-7
47. Dakia, P.A. Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ / P.A. Dakia, B. Wathelet, M. Paquot // Food Chemistry. – 2007. - № 102 (4). - Р. 1368-1374. 10.1016/j.foodchem.2006.05.059
48. Günter, E.A. Calcium pectinate gel beads obtained from callus cultures pectins as promising systems for colon-targeted drug delivery / E.A. Günter, O.V. Popeyko // Carbohydrate Polymers. – 2016. – V. 147. - Р. 490-499. 10.1016/j.carbpol.2016.04.026
49. Vityazev, F.V. Pectin–glycerol gel beads: Preparation, characterization and swelling behavior // D.S. Khramova, N.Y. Saveliev, E.A. Ipatova, A.A. Burkov, V.S. Beloserov, S.V. Popov // Carbohydrate Polymers. – 2020. – V. 238. – Article 116166. 10.1016/j.carbpol.2020.116166
50. Chen, X. Effect of high concentrated sucrose on the stability of OSA-starch-based beta-carotene microcapsules / X. Chen, R. Liang, F. Zhong, J. Ma, N.-A. John, H.D. Goff, W.H. Yokoyama // Food Hydrocolloids. – 2021. – V. 113. – Article 105472. 10.1016/j.foodhyd.2019.105472
51. Lozano-Vazquez, G. Effect of the weight ratio of alginate-modified tapioca starch on the physicochemical properties and release kinetics of chlorogenic acid containing beads / G. Lozano-Vazquez, C. Lobato-Calleros, H. Escalona-Buendia, G. Chavez, J. Alvarez-Ramirez, E.J.J. Vernon-Carter // Food Hydrocolloids. – 2015. – № 48 (4). - Р. 301-311. 10.1016/j.foodhyd.2015.02.032
52. Mitchell, J.R. Starch / J.R. Mitchell, S.E. Hill // Handbook of Hydrocolloids, Elsevier, 2021. - Р. 239-271. 10.1016/B978-0-12-820104-6.00027-9
53. Anal, A.K. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery / A.K. Anal, H. Singh // Trends in Food Science and Technology. – 2007. - № 18 (5). – Р. 240-251. 10.1016/j.tifs.2007.01.004
54. Ben Messaoud, G. Influence of internal composition on physicochemical properties of alginate aqueous-core capsules / G. Ben Messaoud, L. Sánchez-González, L. Probst, S. Desobry // Journal of Colloid and Interface Science. – 2016. – V. 469. - Р. 120-128. 10.1016/j.jcis.2016.02.018
55. Doublier, G. Gums and hydrocolloids: functional aspects / G. Doublier, J.L. Cuvelier // Charlotte Eliason A. (Ed.), Carbohydrates in Food, Taylor and Francis Group, New York, NY., 2006. - Р. 232-272.
56. Slavin, J. Fiber and prebiotics: Mechanisms and health benefits / J. Slavin // Nutrients. – 2013. - № 5 (4). - Р. 1417-1435. 10.3390/nu5041417
57. Daly, J. The effect of feeding xanthan gum on colonic function in man: Correlation with in vitro determinants of bacterial breakdown / J. Daly, J. Tomlin, N.W. Read // The British Journal of Nutrition. – 1993. - № 69 (3). – Р. 897-902. 10.1079/bjn19930089
58. Aguilera, B. Protein gels / B. Aguilera // R.Y. Yuda (Ed.), Proteins in food processing, Woodhead Publishing Limited and CRC Press, New York, 2004. - Р. 468-482.
59. Chen, Ling Enzymatic degradation and bioaccessibility of protein encapsulated β-carotene nano-emulsions during in vitro gastro-intestinal digestion / Ling Chen, W. Yokoyama, R. Liang, F. Zhong // Food Hydrocolloids. – 2020. – V. 100. – Article 105177. 10.1016/j.foodhyd.2019.105177
60. Du, Q. The complex of whey protein and pectin: Interactions, functional properties and applications in food colloidal systems – A review / Q. Du, L. Zhou, F. Lyu, J. Liu, Y. Ding // Colloids and Surfaces B: Biointerfaces. – 2022. – V. 210. – Article 112253. 10.1016/j.colsurfb.2021.112253
61. Fernandes, L. Physicochemical properties and microbial control of chestnuts (Castanea sativa) coated with whey protein isolate, chitosan and alginate during storage / L. Fernandes, E.L. Pereira, M. do Céu Fidalgo, A. Gomes, E. Ramalhosa // Scientia Horticulturae. – 2020. – V. 263. – Article 109105. 10.1016/j.scienta.2019.109105
62. Hamed, S.F. Edible alginate/chitosan-based nanocomposite microspheres as delivery vehicles of Omega-3 rich oils / S.F. Hamed, A.F. Hashim, H.A. Abdel Hamid, K.A. Abd-Elsalam, I. Golonka, W. Musiał, I.M. El-Sherbiny // Carbohydrate Polymers. – 2020. – V. 239. – Article 116201. 10.1016/j.carbpol.2020.116201
63. Kulig, D. Study on alginate–chitosan complex formed with different polymers ratio / D. Kulig, A. Zimoch-Korzycka, A. Jarmoluk, K. Marycz // Polymers. – 2016. - № 8 (5). - Р. 167. 10.3390/polym8050167
64. Romo, I. Soluble complexes between chenopodins and alginate/chitosan: Intermolecular interactions and structural-physicochemical properties / I. Romo, L. Abugoch, C. Tapia // Carbohydrate Polymers. – 2020. – V. 227. – Article 115334. 10.1016/j.carbpol.2019.115334
65. Oakenfull, D. Gelling agents / D. Oakenfull // Critical Reviews in Food Science and Nutrition. – 1987. - № 26 (1). – Р. 1-25. 10.1080/10408398709527463
66. Schrieber, R. Practical Aspects / R. Schrieber, G. Herbert // R. Schrieber, G. Herbert (Eds.), Gelatine Handbook (1st ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007. - Р. 119-299. 10.1002/9783527610969.ch3
67. Zeeb, B. Formation and characterization of filled hydrogel beads based on calcium alginate: Factors influencing nanoemulsion retention and release / B. Zeeb, A.H. Saberi, J. Weiss, D.J. McClements // Food Hydrocolloids. – 2015. – V. 50. – Р. 27-36. 10.1016/j.foodhyd.2015.02.041
68. Bhattacharya, S. Gelling behavior of defatted soybean flour dispersions due to microwave treatment: Textural, oscillatory, microstructural and sensory properties / S. Bhattacharya, R. Jena // Journal of Food Engineering. – 2007. - № 78 (4). - Р. 1305-1314. 10.1016/j.jfoodeng.2005.12.038
69. Lin, D. Effect of concentrations of alginate, soy protein isolate and sunflower oil on water loss, shrinkage, elastic and structural properties of alginate-based emulsion gel beads during gelation / D. Lin, A.L. Kelly, V. Maidannyk, S. Miao // Food Hydrocolloids. – 2020. – V. 108. – Article 105998. 10.1016/j.foodhyd.2020.105998
70. Liu, L. Pectin/Zein beads for potential colon-specific drug delivery: synthesis and in vitro evaluation / L. Liu, M.L. Fishman, K.B. Hicks, M. Kende, G. Ruthel // Drug Delivery. – 2006. - № 13 (6). - Р. 417-423. 10.1080/10717540500394935
71. Tortorella, S. Zein as a versatile biopolymer: Different shapes for different biomedical applications / S. Tortorella, M. Maturi, V. Vetri Buratti, G. Vozzolo, E. Locatelli, L. Sambri, M. Comes Franchini // RSC Advances. – 2021. - № 11 (62). – Р. 39004-39026. 10.1039/D1RA07424E
72. Huang, Y. Curcumin encapsulated zein/caseinate-alginate nanoparticles: Release and antioxidant activity under in vitro simulated gastrointestinal digestion / Y. Huang, Y. Zhan, G. Luo, Y. Zeng, D.J. McClements, K. Hu // Current Research in Food Science. – 2023. – V. 6. - Article 100463. 10.1016/j.crfs.2023.100463
73. Dib, T. Recent Advances in Pectin-based Nanoencapsulation for Enhancing the Bioavailability of Bioactive Compounds: Curcumin Oral Bioavailability / T. Dib, H. Pan, S. Chen // Food Reviews International. – 2023. - № 6 (39). - Р. 3515-3533. 10.1080/87559129.2021.2012796
74. Li, H. Preparation of probiotic microcapsules using gelatin-xylooligosaccharides conjugates by spray drying: Physicochemical properties, survival, digestion resistance and colonization / Li H., Peng F., Lin J.X., Xiong T., Huang T. // Food Bioscience. – 2023. – V. 52. – Article 102462. 10.1016/j.fbio.2023.102462
75. Balanč, B. Calcium-alginate-inulin microbeads as carriers for aqueous carqueja extract / B. Balanč, A. Kalušević, I. Drvenica, M.T. Coelho, V. Djordjević, V.D. Alves, B. Bugarski // Journal of Food Science. – 2016. - № 81 (1). - Р. E65-E75. 10.1111/1750-3841.13167
76. Zhang, Z. Encapsulation of β-carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility / Z. Zhang, R.jie Zhang, D.J. McClements // Food Hydrocolloids. – 2016. – V. 61. - Р. 1-10. 10.1016/j.foodhyd.2016.04.036
77. Martins, E. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks / E. Martins, D. Poncelet, R.C. Rodrigues, D. Renard // Journal of Microencapsulation. – 2017. - № 34 (8). - Р. 754-771. 10.1080/02652048.2017.1403495
78. Morales, E. Alginate/Shellac beads developed by external gelation as a highly efficient model system for oil encapsulation with intestinal delivery / E. Morales, M. Rubilar, C. Burgos-Díaz, F. Acevedo, M. Penning, C. Shene // Food Hydrocolloids. – 2017. – V. 70. - Р. 321-328. 10.1016/j.foodhyd.2017.04.012
79. Chen, F. Encapsulation of Omega-3 fatty acids in nanoemulsions and microgels: Impact of delivery system type and protein addition on gastrointestinal fate / F. Chen, G.-Q. Fan, Z. Zhang, R. Zhang, Z.-Y. Deng, D.J. McClements // Food Research International. – 2017. – V. 100. – Р. 387-395. 10.1016/j.foodres.2017.07.039
80. Kasunmala, I.G.G. Preparation of liquid-core hydrogel beads using antioxidant-rich Syzygium caryophyllatum fruit pulp as a healthy snack / I.G.G. Kasunmala, S. Bandara Navarathne, I. Wickramasinghe // Journal of Texture Studies. – 2020. - № 51 (6). – Р. 937-947. 10.1111/jtxs.12553
81. Maleki, M. Study on liquid core barberry (Berberis vulgaris) hydrogel beads based on calcium alginate: Effect of storage on physical and chemical characterizations / M. Maleki, S.A. Mortazavi, S. Yeganehzad, A. Pedram Nia // Journal of Food Processing and Preservation. – 2020. - № 44 (5). - Р. 1-12. 10.1111/jfpp.14426
82. Bremond, N. Formation of liquid-core capsules having a thin hydrogel membrane: Liquid pearls / N. Bremond, E. Santanach-Carreras, L.Y. Chu, J. Bibette // Soft Matter. – 2010. - № 6 (11). – Р. 2484-2488. 10.1039/b923783f
83. Feng, W. Preparation and characterization of emulsion-filled gel beads for the encapsulation and protection of resveratrol and α-tocopherol / W. Feng, C. Yue, Wusigale, Ni Yingzhou, L. Liang // Food Research International. – 2018. – V. 108. – Р. 161-171. 10.1016/j.foodres.2018.03.035
84. Lin, D. Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels / D. Lin, A.L. Kelly, S. Miao // Trends in Food Science & Technology. – 2020. – V. 102. – Р. 123-137. 10.1016/j.tifs.2020.05.024
85. Li, Z. Biofilm-inspired encapsulation of probiotics for the treatment of complex infections / Z. Li, A.M. Behrens, N. Ginat, S.Y. Tzeng, X. Lu, S. Sivan, A. Jaklenec // Advanced Materials. – 2018. - № 30 (51). - Р. 1-7. 10.1002/adma.201803925\
86. Ahammed, S. Effect of transglutaminase crosslinking on solubility property and mechanical strength of gelatin-zein composite films / S. Ahammed, F. Liu, J. Wu, M.N. Khin, W.H. Yokoyama, F. Zhong // Food Hydrocolloids. – 2021. – V. 116. – Article 106649. 10.1016/j.foodhyd.2021.106649
87. Maitra, J. Cross-linking in hydrogels - a review / J. Maitra, V.K. Shukla // American Journal of Polymer Science. – 2014. - № 4 (2). – Р. 25-31. 10.5923/j.ajps.20140402.01
88. Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering / J. Zhu // Biomaterials. – 2010. - № 31 (17). – Р. 4639-4656. 10.1016/J.BIOMATERIALS.2010.02.044
89. Неповинных, Н.В. Применение пищевых гелей в индустрии питания / Н.В. Неповинных, К. Нишинари, С. Еганехзад, В.С. Куценкова, О.Н. Петрова // Известия высших учебных заведений. Пищевая технология. - 2023. - № 5-6 (394). - С. 118-124.
90. Ching, S.H. Alginate gel particles–A review of production techniques and physical properties / S.H. Ching, N. Bansal, B. Bhandari // Critical Reviews in Food Science and Nutrition. – 2017. - № 57 (6). - Р. 1133-1152. 10.1080/10408398.2014.965773
91. Davarcı, F. The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique / F. Davarcı, D. Turan, B. Ozcelik, D. Poncelet // Food Hydrocolloids. – 2017. – V. 62. - Р. 119-127. 10.1016/j.foodhyd.2016.06.029
92. Kuo, C.K. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties / C.K. Kuo, P.X. Ma // Biomaterials. – 2001. - № 22. – Р. 511-521. 10.1016/S0142-9612(00)00201-5
93. Puguan, J.M.C. Characterization of structure, physico-chemical properties and diffusion behavior of Ca-Alginate gel beads prepared by different gelation methods / J.M.C. Puguan, X. Yu, H. Kim // Journal of Colloid and Interface Science. – 2014. – V. 432. – Р. 109-116. 10.1016/j.jcis.2014.06.048
94. Déat-Lainé, E. Development and in vitro characterization of insulin loaded whey protein and alginate microparticles / E. Déat-Lainé, V. Hoffart, J.M. Cardot, M. Subirade, E. Beyssac // International Journal of Pharmaceutics. – 2012. - № 439 (1–2). – Р. 136-144. 10.1016/j.ijpharm.2012.10.003
95. Gómez-Mascaraque L, G. Nano- and microstructural evolution of alginate beads in simulated gastrointestinal fluids. Impact of M/G ratio, molecular weight and pH / G. Gómez-Mascaraque L, M. Martínez-Sanz, S.A. Hogan, A. López-Rubio, A. Brodkorb // Carbohydrate Polymers. – 2019. – V. 223. - 1:223:115121. 10.1016/j.carbpol.2019.115121
96. Hariyadi, D.M. Current status of alginate in drug delivery / D.M. Hariyadi, N. Islam // Advances in Pharmacological and Pharmaceutical Sciences. - 2020. - 6:2020:8886095. 10.1155/2020/8886095
97. Larosa, C. Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses / C. Larosa, M. Salerno, J.S. de Lima, R. Merijs Meri, M.F. da Silva, L.B. de Carvalho, A. Converti // International Journal of Biological Macromolecules. – 2018. – V. 115. - Р. 900-906. 10.1016/j.ijbiomac.2018.04.138
98. Lević, S. Characterization of sodium alginate/d-limonene emulsions and respective calcium alginate/d-limonene beads produced by electrostatic extrusion / S. Lević, V. Nedović, I. Pajić Lijaković, T. Šolević Knudsen, V. Pavlović, V. Đorđević, V. Rac // Food Hydrocolloids. – 2014. – V. 45. - Р. 111-123. 10.1016/j.foodhyd.2014.10.001
99. Rodríguez, J. Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives / J. Rodríguez, M.J. Martín, M.A. Ruiz, B. Clares // Food Research International. – 2016. – V. 83. – Р. 41-59. 10.1016/j.foodres.2016.01.032
100. Anandharamakrishnan, C. Techniques for nanoencapsulation of food ingredients / C. Anandharamakrishnan // Springer New York, New York, NY, 2014.10.1007/978-1-4614-9387-7
101. Madene, A. Flavour encapsulation and controlled release - A review / A. Madene, M. Jacquot, J. Scher, S. Desobry // International Journal of Food Science and Technology. – 2006. - № 41 (1). – Р. 1-21. 10.1111/j.1365-2621.2005.00980.x
102. Perumalla Venkata, R. Evaluation of the deleterious health effects of consumption of repeatedly heated vegetable oil / R. Perumalla Venkata, R. Subramanyam // Toxicology Reports. – 2016. - № 3. – Р. 636-643. 10.1016/j.toxrep.2016.08.003
103. Hundre, S.Y. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method / S.Y. Hundre, P. Karthik, C. Anandharamakrishnan // Food Chemistry. – 2016. – V. 174. – Р. 16-24. 10.1016/j.foodchem.2014.11.016
104. Gumus, C.E. Formation and stability of ω-3 oil emulsion-based delivery systems using plant proteins as emulsifiers: Lentil, pea, and faba bean proteins / C.E. Gumus, E.A. Decker, D.J. McClements // Food Biophysics. – 2017. - № 12 (2). - Р. 186-197. 10.1007/s11483-017-9475-6
105. de Souza Simões, L. Micro- and nano bio-based delivery systems for food applications: In vitro behavior / L. de Souza Simões, D.A. Madalena, A.C. Pinheiro, J.A. Teixeira, A.A. Vicente, Ó.L. Ramos // Advances in Colloid and Interface Science. – 2017. – V. 243. - Р. 23-45. 10.1016/j.cis.2017.02.010
106. Piorkowski, D.T. Beverage emulsions: Recent developments in formulation, production, and applications / D.T. Piorkowski, D.J. McClements // Food Hydrocolloids. – 2014. – V. 42. – Р. 5-41. 10.1016/j.foodhyd.2013.07.009
107. Joye, I.J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application / I.J. Joye, D.J. McClements // Current Opinion in Colloid and Interface Science. – 2014. - № 19 (5). - Р. 417-427. 10.1016/j.cocis.2014.07.002
Review
For citations:
. Storage and Processing of Farm Products. 2025;33(3). https://doi.org/10.36107/spfp.2025.3.645
JATS XML






















