Preview

Хранение и переработка сельхозсырья

Расширенный поиск

Гелевые комплексы: принципы создания, материалы и технологии для инкапсулирования антоцианов (Обзор предметного поля)

https://doi.org/10.36107/spfp.2025.3.645

Аннотация

Введение: Пищевой гелевый комплекс можно определить, как сферическую сложную трёхмерную коллоидную систему, в которой активные вещества (функциональные пищевые ингредиенты) могут быть диспергированы или заключены в ядро, окружённое непрерывной защитной оболочкой. Функциональные пищевые ингредиенты эффективно инкапсулируются и используются для контролируемой пероральной доставки с помощью гелевых комплексов на основе биополимеров.

Цель: Проанализировать отечественные и зарубежные разработки о принципах изготовления, материалах, характеристике и практического применения гелевых комплексов для инкапсулирования функциональных пищевых ингредиентов (на примере инкапсулирования антоцианов) для определения перспективных направлений дальнейших исследований. 

Материалы и методы. При составлении обзора предметного поля были изучены российские и зарубежные научные публикации, посвященные принципам изготовления, материалам, характеристике и практическому применению гелевых комплексов для создания инкапсулированных форм антоцианов, опубликованные в период с 2001 по 2025 год. Систематический поиск научной литературы был проведен по базам данных РИНЦ, PubMed, Science Direct и в системах Google Scholar.

Результаты: Выявлено, что наиболее популярными инкапсуляторами антоцианов являются такие гидроколлоиды как мальтодекстрин, сывороточный протеин, изолят соевого белка, а также в последнее время у исследователей наблюдается тенденция к использованию комбинаций биополимеров взамен отдельных полимеров из-за их более высокой эффективности инкапсуляции и более низкой стоимости. Для инкапсулирования биоактивных соединений в гелевые комплексы используются различные способы, учитывающие природу готовых комплексов, их назначение, природу основного материала, место высвобождения, размер частиц и т.д. Показано, что при разработке гелевых комплексов необходимо учитывать основные принципы изготовления: состав гелевых комплексов, механизмы высвобождения, структуру и размер, биосовместимость и стабильность.

Выводы: Анализ публикаций отечественных и зарубежных исследователей, посвящённых принципам изготовления, материалам, характеристике и практическому применению гелевых комплексов для инкапсулирования функциональных пищевых ингредиентов (на примере инкапсулирования антоцианов), показал актуальность проведения подобных исследований. Дальнейшие исследования в области более эффективных производственных процессов должны быть направлены на разработку новых подходов к стабилизации натуральных растительных пигментов с помощью гелевых комплексов для расширения их применения в пищевой промышленности.

Об авторе

Наталия Владимировна Неповинных
Саратовский государственный университет генетики, биотехнологии и инженерии имени Н.И. Вавилова
Россия

профессор кафедры технологии продуктов питания



Список литературы

1. Дейнека, В.И., Кульченко, Я.Ю., Блинова, И.П., Чулков, А.Н., & Дейнека, Л.А. (2018). Антоцианы листьев базилика: определение и получение сухих инкапсулированных форм. Химия растительного сырья, (1), 129-135. https://doi.org/10.14258/jcprm.2018013296

2. Ильина, В.С., Соколова, О.Б., Шуватова, Е.Д., Аллох, П., Мельчаков, Р.М., Лепешкин, А.И., Александрова, И.В., & Бараненко, Д.А. (2023). Способ микроинкапсулирования масел, содержащих полиненасыщенные жирные кислоты, для использования в составе функциональных пищевых продуктов. Ползуновский вестник, (2), 7-14.

3. Кульченко, Я.Ю., Дейнека, В.И., Дейнека, Л.А., & Блинова, И.П. (2017). Получение разноцветных инкапсулированных форм антоцианов краснокочанной капусты методом лиофильной сушки. Тонкие химические технологии, 6(12), 32-38.

4. Неповинных, Н.В., & Петрова, О.Н. (2025). Пищевые гидроколлоиды: классификация, функциональные свойства и применение. Пищевые системы, 1(8), 66-72. https://doi.org/10.21323/2618-9771-2025-8-1-66-72

5. Сагитова, Г.Р., Середа, В.М., Данилова, А.И., Шульдайс, В.А., Клюева, Н.В., & Темерев, И.А. (2024). Диетотерапия функциональных расстройств пищеварения у детей первого года жизни: оценка клинической эффективности смеси, содержащей камедь бобов рожкового дерева. Лечащий врач, 9(27), 18-25. https://doi.org/10.51793/OS.2024.27.9.002

6. Тешаев, Х.И., Бобокалонов, Д.Т., Джонмуродов, А.С., Мухидинов, З.К., Касымова, Г.Ф., & Лиу, Л.С. (2011). Пектин-зеиновые гели для инкапсулирования лекарственных средств и пищевых ингредиентов. Известия высших учебных заведений. Химия и химическая технология, 11(54), 97-100.

7. Тихонов, С.Л., & Тихонова, Н.В. (2023). Инкапсуляция биопептида для обеспечения стабильности под действием пептидаз. Научно-технический вестник: Технические системы в АПК, 3(19), 10-14.

8. Шатабаева, Э.О., Мун, Г.А., Шайхутдинов, Е.М., & Хуторянский, В.В. (2020). Желатин: источники, получение и применение в пищевой промышленности и биомедицине. Вестник Казахского национального университета. Серия химическая, 3(98), 28-46. https://doi.org/10.15328/cb1112

9. Ağagündüz, D., Özata-Uyar, G., Kocaadam-Bozkurt, B., Özturan-Şirin, A., Capasso, R., Al-Assaf, S., & Özoğul, F. (2023). A comprehensive review on food hydrocolloids as gut modulators in the food matrix and nutrition: The hydrocolloid-gut-health axis. Food Hydrocolloids, 145, Article 109068. https://doi.org/10.1016/j.foodhyd.2023.109068

10. Aguilera, B. Protein gels (2004). Yuda R.Y. (Ed.), Proteins in food processing. New York: Woodhead Publishing Limited and CRC Press.

11. Anal, A.K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science and Technology, 5(18), 240-251. https://doi.org/10.1016/j.tifs.2007.01.004

12. Anandharamakrishnan, C. (2014). Techniques for nanoencapsulation of food ingredients. Springer. https://doi.org/10.1007/978-1-4614-9387-7

13. Barbosa-Nuñez, J.A., Espinosa-Andrews, H., Cardona, A.A.V., & Haro-González, J.N. (2025). Polymer based encapsulation in food products: a comprehensive review of applications and advancements. Journal of Future Foods, 1(5), 36-49. https://doi.org/10.1016/j.jfutfo.2024.01.003

14. BeMiller, J.N. (2019). Carrageenans. Carbohydrate chemistry for food scientists (3rd ed.). AACC International Press. https://doi.org/10.1016/B978-0-12-812069-9.00013-3

15. Bhattacharya, S., & Jena, R. (2007). Gelling behavior of defatted soybean flour dispersions due to microwave treatment: Textural, oscillatory, microstructural and sensory properties. Journal of Food Engineering, 4(78), 1305-1314. https://doi.org/10.1016/j.jfoodeng.2005.12.038

16. Bremond, N., Santanach-Carreras, E., Chu, L.Y., & Bibette, J. (2010). Formation of liquid-core capsules having a thin hydrogel membrane: Liquid pearls. Soft Matter, 6(11), 2484-2488. https://doi.org/10.1039/b923783f

17. Cao, L., Lu, W., Mata, A., Nishinari, K., & Fang, Y. (2020). Egg-box model-based gelation of alginate and pectin: A review. Carbohydrate Polymers, 242, Article 116389. https://doi.org/10.1016/j.carbpol.2020.116389

18. Cao, Y., & Mezzenga, R. (2020). Design principles of food gels. Nature Food, 1(2), 106-118. https://doi.org/10.1038/s43016-019-0009-x

19. Chen, Z., Wang, C., Gao, X., Chen, Y., Santhanam, R.K., & Wang, C. (2019). Interaction characterization of preheated soy protein isolate with cyanidin-3-O-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts. Food Chemistry, 271, 266–273. https://doi.org/10.1016/j.foodchem.2018.07.170

20. Chen, L., Yokoyama, W., Liang, R., & Zhong, F. (2020). Enzymatic degradation and bioaccessibility of protein encapsulated β-carotene nano-emulsions during in vitro gastro-intestinal digestion. Food Hydrocolloids, 100, Article 105177. https://doi.org/10.1016/j.foodhyd.2019.105177

21. Chen, X., Liang, R., Zhong, F., Ma, J., John, N.-A., Goff, H.D., & Yokoyama, W.H. (2021). Effect of high concentrated sucrose on the stability of OSA-starch-based beta-carotene microcapsules. Food Hydrocolloids, 113, Article 105472. https://doi.org/10.1016/j.foodhyd.2019.105472

22. Ching, S.H., Bansal, N., & Bhandari, B. (2017). Alginate gel particles–A review of production techniques and physical properties. Critical Reviews in Food Science and Nutrition, 6(57), 1133-1152. https://doi.org/10.1080/10408398.2014.965773

23. Corstens, M.N., Berton-Carabin, C.C., Elichiry-Ortiz, P.T., Hol, K., Troost, F.J., Masclee, A.A.M., & Schroën, K. (2017). Emulsion-alginate beads designed to control in vitro intestinal lipolysis: Towards appetite control. Journal of Functional Foods, 34, 319-328. https://doi.org/10.1016/j.jff.2017.05.003

24. Dakia, P.A., Wathelet, B., & Paquot, M. (2007). Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chemistry, 4(102), 1368-1374. https://doi.org/10.1016/j.foodchem.2006.05.059

25. Davarcı, F., Turan, D., Ozcelik, B., & Poncelet, D. (2017). The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique. Food Hydrocolloids, 62, 119-127. https://doi.org/10.1016/j.foodhyd.2016.06.029

26. Déat-Lainé, E., Hoffart, V., Cardot, J.M., Subirade, M., & Beyssac, E. (2012). Development and in vitro characterization of insulin loaded whey protein and alginate microparticles. International Journal of Pharmaceutics, 1-2(439), 136-144. https://doi.org/10.1016/j.ijpharm.2012.10.003

27. Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A., & Nedović, V. (2014). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews, 7. https://doi.org/10.1007/s12393-014-9106-7

28. Du, Q., Zhou, L., Lyu, F., Liu, J., & Ding, Y. (2022). The complex of whey protein and pectin: Interactions, functional properties and applications in food colloidal systems – A review. Colloids and Surfaces B: Biointerfaces, 210, Article 112253. https://doi.org/10.1016/j.colsurfb.2021.112253

29. Eltayeb, I.B., Awad, A.I., Elderbi, M.A., & Shadad, S.A. (2004). Effect of gum arabic on the absorption of a single oral dose of amoxicillin in healthy Sudanese volunteers. The Journal of Antimicrobial Chemotherapy, 2(54), 577-578. https://doi.org/10.1093/jac/dkh372

30. Enache, I.M., Vasile, A.M., Enachi, E., Barbu, V., Stanciuc, N., & Vizireanu, C. (2020). Co-microencapsulation of anthocyanins from black currant extract and lactic acid bacteria in biopolymeric matrices. Molecules, 25, 1700. https://doi.org/10.3390/molecules25071700

31. Ergun, R., Guo, J., & Huebner-Keese, B. (2016). Cellulose. Encyclopedia of Food and Health (pp. 694-702). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00127-6

32. Eskin, M., Ikeda, S., & Cui, S. (2007). Seed polysaccharide gums. Biliaderis C.G., Izydorczyk M.S. (Eds.), Functional food carbohydrates (pp. 127-165). CRC Press. https://doi.org/10.1201/9781420003512.ch4

33. Feng, W., Yue, C., Wusigale, Yingzhou, Ni, & Liang, L. (2018). Preparation and characterization of emulsion-filled gel beads for the encapsulation and protection of resveratrol and α-tocopherol. Food Research International, 108, 161-171. https://doi.org/10.1016/j.foodres.2018.03.035

34. Fernandes, L., Pereira, E.L., do Céu Fidalgo, M., Gomes, A., & Ramalhosa, E. (2020). Physicochemical properties and microbial control of chestnuts (Castanea sativa) coated with whey protein isolate, chitosan and alginate during storage. Scientia Horticulturae, 263, Article 109105. https://doi.org/10.1016/j.scienta.2019.109105

35. Ferron, L., Milanese, C., Colombo, R., Pugliese, R., & Papetti, A. (2022). Selection and optimization of an innovative polysaccharide-based carrier to improve anthocyanins stability in purple corn cob extracts. Antioxidants, 11, 916. https://doi.org/10.3390/antiox11050916

36. Garcı́a-Ochoa, F., Santos, V.E., Casas, J.A., & Gómez, E. (2000). Xanthan gum: Production, recovery, and properties. Biotechnology Advances, 7(18), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1

37. Goff, H.D., & Guo, Q. (2020). The role of hydrocolloids in the development of food structure. In N. Fotis, A.Spyropoulos, & I. Lazidis (Eds.), Handbook of food structure development (pp. 1-28). The Royal Society of Chemistry. https://doi.org/10.1039/9781788016155-00001

38. Gómez-Mascaraque, L.G., Martínez-Sanz, M., Hogan, S.A., López-Rubio, A., & Brodkorb A. (2019). Nano- and microstructural evolution of alginate beads in simulated gastrointestinal fluids. Impact of M/G ratio, molecular weight and pH. Carbohydrate Polymers, 223, 1:223:115121. https://doi.org/10.1016/j.carbpol.2019.115121

39. Gumus, C.E., Decker, E.A., & McClements, D.J. (2017). Formation and stability of ω-3 oil emulsion-based delivery systems using plant proteins as emulsifiers: Lentil, pea, and faba bean proteins. Food Biophysics, 2(12), 186-197. https://doi.org/10.1007/s11483-017-9475-6

40. Günter, E.A., & Popeyko, O.V. (2016). Calcium pectinate gel beads obtained from callus cultures pectins as promising systems for colon-targeted drug delivery. Carbohydrate Polymers, 147, 490-499. https://doi.org/10.1016/j.carbpol.2016.04.026

41. Guo, L., Yokoyama, W., Chen, M., & Zhong, F. (2021). Konjac glucomannan molecular and rheological properties that delay gastric emptying and improve the regulation of appetite. Food Hydrocolloids, 120, Article 106894. https://doi.org/10.1016/j.foodhyd.2021.106894

42. Hamed, S.F., Hashim, A.F., Abdel Hamid, H.A., Abd-Elsalam, K.A., Golonka, I., Musiał, W., & El-Sherbiny, I.M. (2020). Edible alginate/chitosan-based nanocomposite microspheres as delivery vehicles of Omega-3 rich oils. Carbohydrate Polymers, 239, Article 116201. https://doi.org/10.1016/j.carbpol.2020.116201

43. Hariyadi, D.M., & Islam, N. (2020). Current status of alginate in drug delivery. Advances in Pharmacological and Pharmaceutical Sciences, 6, Article 8886095. https://doi.org/10.1155/2020/8886095

44. Huang, Y., Zhan, Y., Luo, G., Zeng, Y., McClements, D.J., & Hu, K. (2023). Curcumin encapsulated zein/caseinate-alginate nanoparticles: Release and antioxidant activity under in vitro simulated gastrointestinal digestion. Current Research in Food Science, 6, Article 100463. https://doi.org/10.1016/j.crfs.2023.100463

45. Hundre, S.Y., Karthik, P., & Anandharamakrishnan, C. (2016). Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method. Food Chemistry, 174, 16-24. https://doi.org/10.1016/j.foodchem.2014.11.016

46. Ibrahim, S., Riahi, O., Said, S.M., Sabri, M.F.M., & Rozali, S. (2019). Biopolymers from crop plants. In Reference module in materials science and materials engineering. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.11573-5

47. Joye, I.J., & McClements, D.J. (2014). Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid and Interface Science, 5(19), 417-427. https://doi.org/10.1016/j.cocis.2014.07.002

48. Karimi, S., & Namazi, H. (2022). Magnetic alginate/glycodendrimer beads for efficient removal of tetracycline and amoxicillin from aqueous solutions. International Journal of Biological Macromolecules, 205, 128-140. https://doi.org/10.1016/j.ijbiomac.2022.02.066

49. Keppeler, S., Ellis, A., & Jacquier, J.C. (2009). Cross-linked carrageenan beads for controlled release delivery systems. Carbohydrate Polymers, 4(78), 973-977. https://doi.org/10.1016/j.carbpol.2009.07.029

50. Kharkar, P.M., Kiick, K.L., & Kloxin, A.M. (2013). Designing degradable hydrogels for orthogonal control of cell microenvironments. Chemical Society Reviews, 42(17), 7335-7372. https://doi.org/10.1039/c3cs60040h

51. Kulig, D., Zimoch-Korzycka, A., Jarmoluk, A., & Marycz, K. (2016). Study on alginate–chitosan complex formed with different polymers ratio. Polymers, 8(5), 167. https://doi.org/10.3390/polym8050167

52. Kuo, C.K., & Ma, P.X. (2001). Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 22, 511-521. https://doi.org/10.1016/S0142-9612(00)00201-5

53. Kurbanov, G.F., Prichepa, A.O., & Sharova, N.Yu. (2024). Xanthan gum: secondary raw materials for biosynthesis, isolation and application. Food Systems, 4(7), 515-522. https://doi.org/10.21323/2618-9771-2024-7-4-515-522

54. Kusherova, P.T., Yerzhanov, Y.B., Tleugalieva, Z.A., Khaldun, A., Aidarova, S.B., & Mohammad, A.B. (2024). Stability study of emulsions based on modified xanthan gum. Complex Use of Mineral Resources, 1(328), 42-49. https://doi.org/10.31643/2024/6445.05

55. Larosa, C., Salerno, M., de Lima, J.S., Merijs Meri, R., da Silva, M.F., de Carvalho, L.B., & Converti, A. (2018). Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses. International Journal of Biological Macromolecules, 115, 900-906. https://doi.org/10.1016/j.ijbiomac.2018.04.138

56. Leela, J.K., & Sharma, G. (2000). Studies on xanthan production from Xanthomonas campestris. Bioprocess Engineering, 6(23), 687-689. https://doi.org/10.1007/s004499900054

57. Lević, S., Nedović, V., Pajić Lijaković, I., Šolević Knudsen, T., Pavlović, V., Đorđević, V., & Rac, V. (2014). Characterization of sodium alginate/d-limonene emulsions and respective calcium alginate/d-limonene beads produced by electrostatic extrusion. Food Hydrocolloids, 45, 111-123. https://doi.org/10.1016/j.foodhyd.2014.10.001

58. Li, Z., Behrens, A.M., Ginat, N., Tzeng, S.Y., Lu, X., Sivan, S., & Jaklenec, A. (2018). Biofilm-inspired encapsulation of probiotics for the treatment of complex infections. Advanced Materials, 30(51), 1-7. https://doi.org/10.1002/adma.201803925

59. Li, D., Wei, Z., & Xue, C. (2021). Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5345-5369. https://doi.org/10.1111/1541-4337.12840

60. Li, H., Wang, T., Hu, Y., Wu, J., & Van der Meeren, P. (2022). Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends in Food Science and Technology, 119, 272-287. https://doi.org/10.1016/j.tifs.2021.12.007

61. Lin, D., Kelly, A.L., & Miao, S. (2020). Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. Trends in Food Science & Technology, 102, 123-137. https://doi.org/10.1016/j.tifs.2020.05.024

62. Lin, D., Kelly, A.L., Maidannyk, V., & Miao, S. (2020). Effect of concentrations of alginate, soy protein isolate and sunflower oil on water loss, shrinkage, elastic and structural properties of alginate-based emulsion gel beads during gelation. Food Hydrocolloids, 108, Article 105998. https://doi.org/10.1016/j.foodhyd.2020.105998

63. Liu, L., Fishman, M.L., Hicks, K.B., Kende, M., & Ruthel, G. (2006). Pectin/Zein beads for potential colon-specific drug delivery: synthesis and in vitro evaluation. Drug Delivery, 6(13), 417-423. https://doi.org/10.1080/10717540500394935

64. Lozano-Vazquez, G., Lobato-Calleros, C., Escalona-Buendia, H., Chavez, G., Alvarez-Ramirez, J., & Vernon-Carter, E.J.J. (2015). Effect of the weight ratio of alginate-modified tapioca starch on the physicochemical properties and release kinetics of chlorogenic acid containing beads. Food Hydrocolloids, 4(48), 301-311. https://doi.org/10.1016/j.foodhyd.2015.02.032

65. Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release - A review. International Journal of Food Science and Technology, 1(41), 1-21. https://doi.org/10.1111/j.1365-2621.2005.00980.x

66. Maleki, G., Woltering, E.J., & Mozafari, M.R. (2022). Applications of chitosan-based carrier as an encapsulating agent in food industry. Trends in Food Science and Technology, 120, 88-99. https://doi.org/10.1016/j.tifs.2022.01.001

67. McClements, D.J. (2017). Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability. Food Hydrocolloids, 68, 238-245. https://doi.org/10.1016/j.foodhyd.2016.05.037

68. Milea, A.S., Vasile, A.M., Circiumaru, A, Dumitras, cu L., Barbu, V., Rapeanu, G., Bahrim, G.E., & Stanciuc, N. (2019). Valorizations of sweet cherries skins phytochemicals by extraction, microencapsulation and development of value-added food products. Foods, 8, 188. https://doi.org/10.3390/foods8060188

69. Mitchell, J.R., & Hill, S.E. (2021). Starch. Handbook of Hydrocolloids (pp. 239-271). Elsevier. https://doi.org/10.1016/B978-0-12-820104-6.00027-9

70. Moser, P., Telis, V.R.N., de Andrade Neves, N., García-Romero, E., Gómez-Alonso, S., & Hermosín-Gutiérrez, I. (2017). Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chemistry, 214, 308–318. https://doi.org/10.1016/j.foodchem.2016.07.081

71. Nie, G., Zang, Y., Yue, W., Wang, M., Baride, A., Sigdel, A., & Janaswamy, S. (2021). Cellulose-based hydrogel beads: Preparation and characterization. Carbohydrate Polymer Technologies and Applications, 2, Article 100074. https://doi.org/10.1016/j.carpta.2021.100074

72. Nordgård, C.T., & Draget, K.I. (2021). Alginates. G.O. Phillips, P.A. Williams (Eds.), Handbook of hydrocolloids (3rd ed., pp. 805-829). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-820104-6.00007-3

73. Perumalla Venkata, R., & Subramanyam R. (2016). Evaluation of the deleterious health effects of consumption of repeatedly heated vegetable oil. Toxicology Reports, 3, 636-643. https://doi.org/10.1016/j.toxrep.2016.08.003

74. Piorkowski, D.T., & McClements, D.J. (2014). Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocolloids, 42, 5-41. https://doi.org/10.1016/j.foodhyd.2013.07.009

75. Puguan, J.M.C., Yu, X., & Kim, H. (2014). Characterization of structure, physico-chemical properties and diffusion behavior of Ca-Alginate gel beads prepared by different gelation methods. Journal of Colloid and Interface Science, 432, 109-116. https://doi.org/10.1016/j.jcis.2014.06.048

76. Rakhshaei, R., Namazi, H., Hamishehkar, H., & Rahimi, M. (2020). Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. International Journal of Biological Macromolecules, 150, 1121-1129. https://doi.org/10.1016/j.ijbiomac.2019.10.118

77. Redaelli, F., Sorbona, M., & Rossi, F. (2017). Synthesis and processing of hydrogels for medical applications. Bioresorbable polymers for biomedical applications: From fundamentals to translational medicine. Elsevier. https://doi.org/10.1016/B978-0-08-100262-9.00010-0

78. Ribeiro, J.S., & Veloso, C.M. (2021). Microencapsulation of natural dyes with biopolymers for application in food: A review. Food Hydrocolloids, 112, Article 106374. https://doi.org/10.1016/j.foodhyd.2020.106374

79. Rodríguez, J., Martín, M.J., Ruiz, M.A., & Clares, B. (2016). Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Research International, 83, 41-59. https://doi.org/10.1016/j.foodres.2016.01.032

80. Romo, I., Abugoch, L., & Tapia, C. (2020). Soluble complexes between chenopodins and alginate/chitosan: Intermolecular interactions and structural-physicochemical properties. Carbohydrate Polymers, 227, Article 115334. https://doi.org/10.1016/j.carbpol.2019.115334

81. Saifullah, M., Shishir, I. M.R., Ferdowsi, R., Tanver Rahman, M.R., & Van Vuong, Q. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends in Food Science and Technology, 86, 230-251. https://doi.org/10.1016/j.tifs.2019.02.030

82. Saqib, M.N., & Tanver Rahman, M.R. (2022). Phenolic acids. In J. Kour & G.A. Nayik (Eds.), Nutraceuticals and health care (pp. 303-316). Elsevier. https://doi.org/10.1016/B978-0-323-89779-2.00014-4

83. Saqib, M.N., Ahammed, S., Liu, F., & Zhong, F. (2022). Customization of liquid-core sodium alginate beads by molecular engineering. Carbohydrate Polymers, 284, Article 119047. https://doi.org/10.1016/j.carbpol.2021.119047

84. Saqib, M.N., Liu, F., Chen, M., Ahammed, S., Liu, X., & Zhong, F. (2022). Thermo-mechanical response of liquid-core beads as affected by alginate molecular structure. Food Hydrocolloids, 131, Article 107777. https://doi.org/10.1016/j.foodhyd.2022.107777

85. Schrieber R., & Herbert, G. (2007). Practical aspects. In Gelatine Handbook (1st ed., pp. 119-299). Wiley. https://doi.org/10.1002/9783527610969.ch3

86. Seisun, D., & Zalesny, N. (2021). Strides in food texture and hydrocolloids. Food Hydrocolloids, 117, Article 106575. https://doi.org/10.1016/j.foodhyd.2020.106575

87. Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2017). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules, 107, 1800-1810. https://doi.org/10.1016/j.ijbiomac.2017.10.044

88. Sharma, M., Sharma, V., & Majumdar, D.K. (2014). Entrapment of a-amylase in agar beads for biocatalysis of macromolecular substrate. International Scholarly Research Notices, 1-8. https://doi.org/10.1155/2014/936129

89. Shahidi, F., Ambigaipalan, P., Abad, A., & Pegg, R.B. (2020). Food and bioactive encapsulation. Handbook of food preservation (pp. 529-596). Publisher Taylor & Francis Group, LLC. https://doi.org/10.1201/9780429091483-38

90. Souza Simões, L., Madalena, D.A., Pinheiro, A.C., Teixeira, J.A., Vicente, A.A., & Ramos, Ó.L. (2017). Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 243, 23-45. https://doi.org/10.1016/j.cis.2017.02.010

91. Souza, A.C.P., Gurak, P.D., & Marczak, L.D.F. (2017). Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace. Food Bioprod Process, 102, 186–194. https://doi.org/10.1016/j.fbp.2016.12.012

92. Stanciuc, N., Oancea, A.M., Aprodu, I., Turturica, M., Barbu, V., & Ionita, E. (2018). Investigations on binding mechanism of bioactives from elderberry (Sambucus nigra L.) by whey proteins for efficient microencapsulation. Journal of Food Engineering, 223, 197–207. https://doi.org/10.1016/j.jfoodeng.2017.10.019

93. Stanley, N.F. (2006). Agar. Food polysaccharides and their application (2nd ed., pp. 186-204). CRC Press. https://doi.org/10.1201/9781420015164

94. Stribiţcaia, E., Krop, E.M., Lewin, R., Holmes, M., & Sarkar, A. (2020). Tribology and rheology of bead-layered hydrogels: Influence of bead size on sensory perception. Food Hydrocolloids, 104. https://doi.org/10.1016/j.foodhyd.2020.105692

95. Theocharidou, A., Mourtzinos, I., & Ritzoulis, C. (2022). The role of guar gum on sensory perception, on food function, and on the development of dysphagia supplements – A review. Food Hydrocolloids for Health, 2, Article 100053. https://doi.org/10.1016/j.fhfh.2022.100053

96. Tortorella, S., Maturi, M., Vetri Buratti, V., Vozzolo, G., Locatelli, E., Sambri, L., & Comes Franchini, M. (2021). Zein as a versatile biopolymer: Different shapes for different biomedical applications. RSC Advances, 11(62), 39004-39026. https://doi.org/10.1039/D1RA07424E

97. Vityazev, F.V., Khramova, D.S., Saveliev, N.Y., Ipatova, E.A., Burkov, A.A., Beloserov, V.S., & Popov, S.V. (2020). Pectin–glycerol gel beads: Preparation, characterization and swelling behavior. Carbohydrate Polymers, 238, Article 116166. https://doi.org/10.1016/j.carbpol.2020.116166

98. Wong, S.K., Lawrencia, D., Supramaniam, J., Goh, B.H., Manickam, S., Wong, T.W., & Tang, S.Y. (2021). In vitro digestion and swelling kinetics of thymoquinone-loaded pickering emulsions incorporated in alginate-chitosan hydrogel beads. Frontiers in Nutrition, 8, 1-14. https://doi.org/10.3389/fnut.2021.752207

99. Yermak, I.M., Gorbach, V.I., Karnakov, I.A., Davydova, V.N., Pimenova, E.A., Chistyulin, D.А., & Glazunov, V.P. (2021). Carrageenan gel beads for echinochrome inclusion: Influence of structural features of carrageenan. Carbohydrate Polymers, 272, Article 118479. https://doi.org/10.1016/j.carbpol.2021.118479

100. Yuan, Y., Kong, Z.-Y., Sun, Y.-E., Zeng, Q.-Z., & Yang, X.-Q. (2017). Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery. LWT, 75, 171-179. https://doi.org/10.1016/j.lwt.2016.08.045

101. Zang, Z., Chou, S., Geng, L., Si, X., Ding, Y., Lang, Y., Cui H., Gao N., Chen Y., Wang M., Xie X., Xue B., & Li B. (2021). Interactions of blueberry anthocyanins with whey protein isolate and bovine serum protein: Color stability, antioxidant activity, in vitro simulation, and protein functionality. LWT, 152, Article 112269. https://doi.org/10.1016/j.lwt.2021.112269

102. Zeeb, B., Saberi, A.H., Weiss, J., & McClements, D.J. (2015). Formation and characterization of filled hydrogel beads based on calcium alginate: Factors influencing nanoemulsion retention and release. Food Hydrocolloids, 50, 27-36. https://doi.org/10.1016/j.foodhyd.2015.02.041


Рецензия

Для цитирования:


Неповинных Н.В. Гелевые комплексы: принципы создания, материалы и технологии для инкапсулирования антоцианов (Обзор предметного поля). Хранение и переработка сельхозсырья. 2025;33(3). https://doi.org/10.36107/spfp.2025.3.645

Просмотров: 28

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)