Preview

Storage and Processing of Farm Products

Advanced search

Impacts of ionizing radiation on the potato tuber enzymatic activity

  Timur Zarifovich Minbagisov,   Irina Stanislavovna Selezneva,   Maxim Alekseevich Bezmaternykh,   Anna Alexandrovna Baranova

CRediT authorship contribution statement

  1. Z. Minbagisov: Formal Analysis, Investigation, Data Curation, Writing – Original Draft Preparation, Writing – Review & Editing, Vizualization.
  2. S. Selezneva: Conceptualization, Methodology, Resources, Validation, Writing – Original Draft Preparation, Writing – Review & Editing, Supervision.
  3. A. Bezmaternykh: Resources, Validation, Writing – Review & Editing, Vizualization.
  4. A. Baranova: Resources, Investigation.

https://doi.org/10.36107/spfp.2025.3.647

Abstract

Introduction: Potato losses caused by germination and changes in the biochemical balance of tubers during the storage reach 14 % of the whole harvest volume around the Russian Federation. The application of the ionizing radiation is known as an effective method of germination inhibiting but its effect on the enzymatic activity and protein precipitation profile of potato tubers has not been sufficiently studied.

Purpose: To evaluate the effect of bremsstrahlung at doses of 50–150 Gy recommended by the IAEA (International Atomic Energy Agency) on mechanical firmness, protein structure as well as enzyme activity of the potato antioxidant system and metabolism.

Materials and methods: Red Scarlett variety of potatoes is the subject of the given study. The research aims to apply bremsstrahlung (10 MeV) at doses of 0, 50, 100 and 150 Gy and as a result to measure mechanical firmness by a penetrometer, to carry out salting out of protein with ammonium sulfate, to determine the total protein content by Lowry's method as well as to define the activity of acid phosphatase and catalase (spectrophotometrically and titrimetrically).

Results: The research has shown that firmness of potato tubers at a dose of 150 Gy increases by 34 % as compared with the controlled one. Mass of protein precipitation at a dose of 100 Gy reaches its maximum exceeding the control by 8.81 times. The total protein content exceeds the control by 6.60 times at a dose of 150 Gy. The activity of acid phosphatase increases up to 2.8 times at a dose of 100 Gy leading to its further decrease. According to the given research, the activity of catalase increases with an increasing dose and reaches a maximum at a dose of 150 Gy (2.14 times higher than the control).

Conclusions: The obtained results confirm the sensitivity of the metabolic and structural parameters of potatoes to ionizing radiation doses and demonstrate the greatest potential of the ionizing radiation application for the storage technology.

About the Authors

Timur Zarifovich Minbagisov
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Minbagisov Timur Zarifovich, doctoral candidate of the Technology for Organic Synthesis Department of the Institute of Chemical Engeneering of the Ural Federal University named after the first President of Russia B. N. Yeltsin (620002, Russian Federation, Sverdlovsk region, Yekaterinburg, Mira street, 19), ORCID: https://orcid.org/0000-0002-1216-338X, Researcher ID: NMK-5874-2025, SPIN-code: 1014-5667, tz-minbagisov@yandex.ru.



Irina Stanislavovna Selezneva
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Selezneva Irina Stanislavovna, Ph.D of Chemical Sciences, Associate Professor of the Technology for Organic Synthesis Department of the Institute of Chemical Engeneering of the Ural Federal University named after the first President of Russia B. N. Yeltsin (620002, Russian Federation, Sverdlovsk region, Yekaterinburg, Mira street, 19), ORCID: https://orcid.org/0000-0002-7039-1874, Scopus ID: 57193404586, SPIN-code: 4745-3470, i.s.selezneva@urfu.ru.



Maxim Alekseevich Bezmaternykh
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Bezmaternykh Maxim Alekseevich, Ph.D of Chemical Sciences, Associate Professor of the Technology for Organic Synthesis Department of the Institute of Chemical Engeneering of the Ural Federal University named after the first President of Russia B. N. Yeltsin (620002, Russian Federation, Sverdlovsk region, Yekaterinburg, Mira street, 19), ORCID: https://orcid.org/0000-0002-3286-9179, Scopus ID: 6506164812, SPIN-code: 1193-4835, AuthorID: 49433, m.a.bezmaternyh@urfu.ru.



Anna Alexandrovna Baranova
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Baranova Anna Alexandrovna, Ph.D of Technical Sciences, Associate Professor of the Experimental Physics Department of the Institute of Physics and Technology of the Ural Federal University named after the first President of Russia B. N. Yeltsin (620002, Russian Federation, Sverdlovsk region, Yekaterinburg, Mira street, 19). ORCID: 0000-0002-3020-3832, Scopus ID: 56421777700, SPIN-code: 6808-9342, AuthorID: 789057, a.a.baranova@urfu.ru.



References

1. Avdyukhina, V. M., Bliznyuk, U. A., Borshchegovskaya, P. Yu., Buslenko, A. V., Ilyushin, A. S., Kondratieva, E. G., Krusanov, G. A., Levin, I. S., Sinitsyn, A. P., Studenikin, F. R., & Chernyaev, A. P. (2018). Issledovaniye vozdeystviya rentgenovskogo izlucheniya na kontsentratsiyu vosstanavlivayushchikh sakharov v kartofele i na yego prorastaniye [Investigation of the effect of X-ray radiation on the concentration of reducing sugars in potatoes and on its germination]. Vestnik Moskovskogo Universiteta. Seriya 3: Fizika. Astronomiya [Bulletin of Moscow University. Series 3: Physics. Astronomy], (3), 99–103.

2. https://www.elibrary.ru/item.asp?id=36275496

3. Aleksakhin, R. M., Sanzharova, N. I., Kozmin, G. V., Pavlov, A. N., & Geraskin, S. A. (2014). Perspektivy ispol'zovaniya radiatsionnykh tekhnologiy v agropromyshlennom komplekse Rossiyskoy Federatsii [Prospects for the use of radiation technologies in the agro-industrial complex of the Russian Federation]. Вестник РАЕН [RAEN Journal], 14(1), 78–85.

4. https://www.elibrary.ru/item.asp?id=21761626

5. Alimov, A. S., Bliznyuk, U. A., Borshegovskaya, P. U., Varzar, S. M., Elansky, S. N., Ishkhanov, B. S., Litvinov, Yu. Yu., Matveychuk, I. V., Nikolaeva, A. A., Rozanov, V. V., Studenikin, F. R., Chernyaev, A. P., Shvedunov, V. I., & Yurov, D. S. (2017). Primeneniye puchkov uskorennykh elektronov dlya radiatsionnoy obrabotki produktov pitaniya i biomaterialov [Application of accelerated electron beams for radiation processing of food and biomaterials]. Izvestiya RAN. Seriya fizicheskaya [News of the RAN. Physical series], 81(6), 819–823. https//doi.org/10.7868/S0367676517060035

6. Bavrina, A. P., & Borisov, I. B. (2021). Sovremennyye pravila primeneniya korrelyatsionnogo analiza [Modern rules for the use of correlation analysis]. Meditsinskiy al'manakh [Medical Almanac], (3, 68), 70–79.

7. https://elibrary.ru/item.asp?id=46594535

8. Bezuglov, V. V., Bryazgin, A. A., Vlasov, A. Yu., Voronin, L. A., Panfilov, A. D., Radchenko, V. M., Tkachenko, V. O., & Shtarklev, E. A. (2016). Promyshlennyye uskoriteli elektronov ILU dlya sterilizatsii meditsinskikh izdeliy i obrabotki pishchevykh produktov [Industrial electron accelerators ILU for sterilization of medical devices and food processing]. Pis'ma v zhurnal Fizika elementarnykh chastits i atomnogo yadra [Letters to the journal Physics of elementary particles and the atomic nucleus], 13(7, 205), 1581–1585.

9. https://www.elibrary.ru/item.asp?id=48414938

10. Gaponenko, S. O., Shamal N. V., Korol’, R. A., Milevich, T. I., & Gerasimenya, V. P. (2016). Vliyaniye ioniziruyushchego i neioniziruyushchego izlucheniya na prorastaniye semyan yachmenya [Influence of ionizing and non-ionizing radiation on barley seeds growth]. Ekologicheskaya kul'tura i okhrana okruzhayushchey sredy: II Dorofeyevskiye chteniya [Ecological culture and environmental protection: II Dorofeev readings], 30–32.

11. https://www.elibrary.ru/item.asp?id=27635737

12. Devyatkina, L. N. (2018). Proizvodstvo kartofelya: Global'nyye i natsional'nyye diskursy [Potato production: Global and national discourses]. Vestnik NGIEI [NGIEI Journal], (5, 84), 122–134. https://www.elibrary.ru/item.asp?id=34908652

13. Kim, V. V., Galaktionova, E. A., & Antonevich, K. V. (2020). Prodovol'stvennyye poteri i pishchevyye otkhody na potrebitel'skom rynke RF [Food losses and food waste in the consumer market of the Russian Federation]. International agricultural journal, 63(4), 1.

14. https//doi.org/10.24411/2588-0209-2020-10191

15. Kosterina, V. V. (2016). Katalaza kak predstavitel' biologicheskikh katalizatorov i yeye aktivnost' v raznykh sortakh kartofelya [Catalase as a representative of biological catalysts and its activity in different potato varieties]. Vestnik soveta molodykh uchonykh i spetsialistov Chelyabinskoy oblasti [Bulletin of the Council of Young Scientists and Specialists of the Chelyabinsk Region], 1(4, 15), 30–33.

16. https://www.elibrary.ru/item.asp?id=27682343

17. Kostryukova, N. K., & Karpin, V. A. (2005). Biologicheskiye effekty malykh doz ioniziruyushchego izlucheniya [Biological effects of low doses of ionizing radiation]. Sibirskiy meditsinskiy zhurnal (Irkutsk) [Siberian Medical Journal (Irkutsk)], 50(1), 17–23.

18. https://mir.ismu.baikal.ru/src/downloads/d4a732ff_2005-1.pdf

19. Musina, O. N., & Konovalov, K. L. (2016). Radiatsionnaya obrabotka ioniziruyushchim izlucheniyem prodovol'stvennogo syr'ya i pishchevykh produktov [Radiation processing by ionizing radiation of food raw materials and food products]. Pishchevaya promyshlennost' [Food Industry], (8), 46–49.

20. https://www.elibrary.ru/item.asp?id=26717046

21. Nikerova, K. M. (2020). Aktivnost' fermentov antioksidantnoy sistemy pri izmenenii stsenariyev ksilogeneza u Betula Pendula Roth i Pinus Sylvestris L. [The activity of enzymes of the antioxidant system during changes in xylogenesis scenarios in Betula Pendula Roth and Pinus Sylvestris L.] [Unpublished PhD thesis, Institut Lesa]. Petrozavodsk: Institut Lesa.

22. Nikitenko, G. V., & Lysakov, A. A. (2016). Innovatsii v kartofelekhranenii [Potato storage innovations]. Innovatika i ekspertiza: Nauchnyye Trudy [Innovation and expertise: Scientific papers], (2, 17), 66–75.

23. https://www.elibrary.ru/item.asp?id=27149778

24. Orazova, S. B., & Tashenova, A. A. (2013). Aktivnost' kislykh i shchelochnykh fosfataz v mikoriznykh rasteniyakh tomata [Activity of acid and alkaline phosphatases in mycorrhizal tomato plants]. Vestnik KazNU. Seriya biologicheskaya [KazNU Bulletin: Biological series], 2(58), 42–46.

25. https://bb.kaznu.kz/index.php/biology/article/view/463/433

26. Rubin, B. A., & Metlitsky, L. V. (1959). Izucheniye deystviya ioniziruyushchikh izlucheniy na obmen veshchestv klubney kartofelya v svyazi s problemoy yego kruglogodovogo khraneniya [Study of the effect of ionizing radiation on the metabolism of potato tubers in connection with the problem of its year-round storage]. Polucheniye i primeneniye izotopov [Production and application of isotopes], 374–386.

27. http://elib.biblioatom.ru/text/doklady-zheneva-1958_t6_poluchenie-izotopov_1959/go,376/

28. Sanzharova, N. I., Kozmin, G. V., Pavlov, A. N., Kobyalko, V. O., Loy, N. N., & Tsygvintsev, P. N. (2018). Radiatsionnyye tekhnologii v sel'skom khozyaystve i pishchevoy promyshlennosti: Istoriya, sovremennoye sostoyaniye i perspektivy [Radiation technologies in agriculture and food industry: History, current state and prospects]. Radiatsionnyye tekhnologii v sel'skom khozyaystve i pishchevoy promyshlennosti: Sostoyaniye i perspektivy [Radiation technologies in agriculture and food industry: Current state and prospects], 32–36.

29. https://www.elibrary.ru/item.asp?id=37004495

30. Safonova, V. Yu., & Safonova, V. A. (2011). Biologicheskoye vliyaniye malykh doz radiatsii, aspekty bezopasnosti [Biological influence of small doses of radiation, safety aspects]. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta [News of the Orenburg State Agrarian University], (3, 31), 308–310.

31. https://elibrary.ru/item.asp?id=16901704

32. Afify, A. E.-M. M., El-Beltagi, H. S., Aly, A. A., & El-Ansary, A. E. (2012). Antioxidant enzyme activities and lipid peroxidation as biomarker compounds for potato tuber stored by gamma radiation. Asian Pacific Journal of Tropical Biomedicine, 2(3), S1548–S1555. https://doi.org/10.1016/S2221-1691(12)60451-1

33. Akhila, P. P., Sunooj, K. V., Aaliya, B., Navaf, M., Sudheesh, C., Sabu, S., Sasidharan, A., Mir, S. A., George, J., & Mousavi Khaneghah, A. (2021). Application of electromagnetic radiations for decontamination of fungi and mycotoxins in food products: A comprehensive review. Trends in Food Science & Technology, 114, 399–409. https://doi.org/10.1016/j.tifs.2021.06.013

34. Basfar, A. A., Mohamed, K. A., & Al-Saqer, O. A. (2012). De-contamination of pesticide residues in food by ionizing radiation. Radiation Physics and Chemistry, 81(4), 473–478. https://doi.org/10.1016/j.radphyschem.2011.12.040

35. Bisht, B., Bhatnagar, P., Gururani, P., Kumar, V., Tomar, M. S., Sinhmar, R., Rathi, N., & Kumar, S. (2021). Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables– a review. Trends in Food Science & Technology, 114, 372–385. https://doi.org/10.1016/j.tifs.2021.06.002

36. EC, FAO, IAEA, ILO, OECD/NEA, PAHO, UNEP & WHO (2016). Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. Vienna: International Atomic Energy Agency.

37. https://www.iaea.org/publications/8930/radiation-protection-and-safety-of-radiation-sources-international-basic-safety-standards

38. EFSA (2011). Statement summarising the Conclusions and Recommendations from the Opinions on the Safety of Irradiation of Food adopted by the BIOHAZ and CEF Panels. EFSA Journal, 9(4), 2107. https://doi.org/10.2903/j.efsa.2011.2107

39. HLPE (2014). Food losses and waste in the context of sustainable food systems. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. Rome: Committee on World Food Security.

40. https://www.fao.org/3/i3901e/i3901e.pdf

41. Kume, T., Furuta, M., Todoriki, S., Uenoyama, N., & Kobayashi, Y. (2009). Status of food irradiation in the world. Radiation Physics and Chemistry. 78(3), 222–226. https://doi.org/10.1016/j.radphyschem.2008.09.009

42. Lung, H.-M., Cheng, Y.-C., Chang, Y.-H., Huang, H.-W., Yang, B. B., & Wang, C.-Y. (2015). Microbial decontamination of food by electron beam irradiation. Trends in Food Science & Technology, 44(1), 66–78. https://doi.org/10.1016/j.tifs.2015.03.005

43. Riley, P. A. (1994). Free radicals in biology: Oxidative stress and the effects of ionizing radiation. International Journal of Radiation Biology. 65(1), 27–33. https://doi.org/10.1080/09553009414550041

44. Schenk, G., Elliott, T. W., Leung, E., Carrington, L. E., Mitić, N., Gahan, L. R., & Guddat, LW. (2008). Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle. BMC Structural Biology. 8(1), 6.

45. https//doi.org/10.1186/1472-6807-8-6

46. van Kooij, J. (1981). Food preservation by irradiation. IAEA Bulletin, 23(3), 33–36.

47. https://www.iaea.org/publications/magazines/bulletin/23-3/food-preservation-irradiation


Review

For citations:


Minbagisov T.Z., Selezneva I.S., Bezmaternykh M.A., Baranova A.A. Impacts of ionizing radiation on the potato tuber enzymatic activity. Storage and Processing of Farm Products. 2025;33(3). https://doi.org/10.36107/spfp.2025.3.647

Views: 16

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)