Preview

Storage and Processing of Farm Products

Advanced search

Justified Extension of Shelf Life of Products Stored in a Collagen-Containing Ichthyosubstance-Based Edible Film

https://doi.org/10.36107/spfp.2025.2.651

Abstract

Introduction: Over the past decade, the food industry has faced the challenge of extending the shelf life of semi-finished products while maintaining their sensory and microbiological quality. At the same time, there has been a growing interest in the use of biodegradable packaging materials that ensure consumer safety and minimize negative environmental impacts. The implementation of innovative biodegradable packaging capable of preserving the freshness of food products contributes to the reduction of food waste. This approach aligns with the objectives of the “Strategy for Improving the Quality of Food Products in the Russian Federation until 2030,” which includes the development and adoption of new packaging solutions for maintaining food quality.

Purpose: To conduct a comprehensive assessment of the quality and safety of meat-based semi-finished products packaged in a biodegradable film based on collagen-containing ichthyosubstance and chitosan as an antimicrobial agent, and to determine the degree of biodegradability of the developed film in soil.

Materials and Methods: The biodegradable film was evaluated through organoleptic (appearance, odor, color) and microscopic methods, as well as for its stability during storage and its biodegradation potential. Two groups of 200 g semi-finished products were formed: control samples (in commercial packaging) and experimental samples. Both groups were stored under conditions specified by GOST and technical standards. Microbiological safety indicators were monitored over an eight-week period, including total viable counts (GOST 10444.15-94), coliform bacteria (GOST 31747-2012), yeasts and molds (GOST 10444.12-2013), Listeria monocytogenes (GOST 32031-2012), Salmonella spp. (GOST 31659-2012), and S. aureus (GOST 31746-2012). Biodegradability was assessed both visually and microscopically. For this purpose, film samples (5×2 cm) were placed in containers with garden soil at 60% humidity ±5% (according to section 7.2.2.3 of GOST R ISO 11266-2016) and mounted on sterile microscope slides. Organoleptic tests were carried out in accordance with GOST 9959-2015 “Meat and Meat Products. General requirements for sensory evaluation” using a five-point scale. The peroxide and acid values were measured according to GOST 34118-2017 and GOST R 55480-2013.

Results: Experimental data demonstrated that meat semi-finished products stored in the developed biodegradable film at –10 ± 1 °C retained high sensory quality scores (≥ 4 out of 5) for up to 60 days. The total viable count (TVC) remained within permissible limits for the same period, exceeding the threshold only by day 72. Under simulated environmental conditions, the film fully degraded within two weeks, confirming its environmental friendliness. The use of collagen–chitosan biodegradable film significantly slowed lipid oxidation in frozen products. Throughout the storage period, the peroxide value in the experimental samples remained within acceptable limits, whereas in the control group it exceeded the threshold by day 30. The acid value increased more slowly in the coated samples compared to the control, further indicating the protective properties of the packaging against fat oxidation.

Conclusion: This study confirms that the collagen-chitosan-based biodegradable film effectively extends the shelf life of meat semi-finished products up to 60 days at –10 ± 1 °C, while preserving their microbiological and sensory quality and slowing lipid oxidation. The film completely degrades in soil within eight weeks, confirming its environmental safety. These findings highlight the potential of utilizing secondary aquatic bioresources for the production of environmentally friendly packaging materials.

 

About the Authors

Olga D. Sergazieva
Moscow State University of Technology and Management named after K.G. Razumovsky (First Cossack University)
Russian Federation


Svetlana V. Eremeeva
Astrakhan State Technical University
Russian Federation


Danil V. Oldyrev
Astrakhan State Technical University
Russian Federation


References

1. Antipova, L. V., & Piskova, M. A. (2018). Perspektiva primeneniya rybnogo kollagena v proizvodstve pishchevyh produktov. Aktual'naya bio-tekhnologiya, 3(26), 535. https://elibrary.ru/item.asp?id=36432635.

2. Antipova, L. V., Storublevcev, S. A., Bolgova, S. B., & Suhov, I. V. (2015). Poluchenie, identifikaciya i sravnitel'nyj analiz rybnyh kollagenov s analogami zhivotnogo proiskhozhdeniya. Fundamental'nye issledovaniya, (8-1), 9–13. https://elibrary.ru/item.asp?id=23913714.

3. Antipova, L. V., Storublevcev, S. A., Piskova, M. A., & Himishev, YU. Z. (2018). Belkovye resursy rybnogo proiskhozhdeniya – istochnik zdorov'ya i kra-soty. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernyh tekhnologij, 80(4[78]), 138–144. https://doi.org/10.20914/2310-1202-2018-4-138-144.

4. Baranenko D.A, & Zabelina N.A. (2011). Podavlenie zhiznedeyatel'nosti mikroflory porchi myasa i myasoproduktov s pomoshch'yu bar'ernoj tekhnologii. Nauchnyj zhurnal NIU ITMO. Seriya «Processy i apparaty pishchevyh proizvodstv», (1), 238-245.

5. Beloglazova K.E. (2020) Razrabotka plenochnyh pokrytij na osnove polisaharidov i perspektivy ih ispol'zovaniya: avtoref. dis. na soisk. uchen. step. kand. biol. nauk (03.01.06); Federal'noe gosudarstvennoe byudzhetnoe obra-zovatel'noe uchrezhdenie vysshego obrazovaniya «Saratovskij gosudarstvennyj agrarnyj universitet imeni N.I. Vavilova». - Saratov. - 24 s.

6. Chen, Y., Liu, Y., Dong, Q., Xu, C., Deng, S., Kang, Y., Fan, M., & Li, L. (2023). Application of functionalized chitosan in food: A review. International journal of biological macromolecules, 235, 123716. https://doi.org/10.1016/j.ijbiomac.2023.123716

7. Dyshlyuk L.S., Prosekov A.YU., & Asyakina L.K. (2019). Izuchenie svojstv biorazlagaemyh plenok iz prirodnyh polisaharidov. Izvestiya vuzov. Pri-kladnaya himiya i biotekhnologiya, 9 (4 (31)), 703-711.

8. Eranda, D. H. U., Chaijan, M., Panpipat, W., Karnjanapratum, S., Cerqueira, M. A., & Castro-Muñoz, R. (2024). Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. International journal of biological macromole-cules, 280(Pt 2), 135661. https://doi.org/10.1016/j.ijbiomac.2024.135661

9. Eremeeva S.V., Sergazieva O.D., Soprunova O.B., ZHukova O.I., & Oldyrev D.V. (2023). VLIYANIE BIORAZLAGAEMOJ IHTIOZHELATINO-VOJ PLENKI NA KACHESTVO MYASNYH POLUFABRIKATOV PRI HRANENII. Vestnik YUzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Pishchevye i biotekhnologii, 11 (3), 64-74.

10. Fakhreddin Hosseini, S., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin-chitosan blend edible films. Food chemistry, 136(3-4), 1490–1495. https://doi.org/10.1016/j.foodchem.2012.09.081

11. Jridi, M., Abdelhedi, O., Salem, A., Zouari, N., & Nasri, M. (2024). Food applications of bioactive biomaterials based on gelatin and chitosan. Advances in food and nutrition research, 110, 399–438. https://doi.org/10.1016/bs.afnr.2024.03.002

12. Lou, L., & Chen, H. (2023). Functional modification of gelatin-based bio-degradable composite films: a review. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 40(7), 928–949. https://doi.org/10.1080/19440049.2023.2222844

13. Mahacheva, E. V., & Vloshchinskij, P. E. (2013). Fiziko-himicheskie iz-meneniya v mnogokomponentnyh myasnyh rublenyh izdeliyah. Vestnik Krasno-yarskogo gosudarstvennogo agrarnogo universiteta, (7), 259-264, https://cyberleninka.ru/article/n/fiziko-himicheskie-izmeneniya-v-mnogokomponentnyh-myasnyh-rublenyh-izdeliyah.

14. Makarova N.V., Eremeeva N.B., Bykov D.E., & Davydova YA.V. (2018). Issledovanie organolepticheskih, prochnostnyh, fiziko-himicheskih svojstv mnogoslojnoj s"edobnoj plenki na osnove yablochnogo syr'ya. Vestnik Kam-chatskogo gosudarstvennogo tekhnicheskogo universiteta, (46), 35-46.

15. Moreira, M.delR., Ponce, A., Ansorena, R., & Roura, S. I. (2011). Effective-ness of edible coatings combined with mild heat shocks on microbial spoilage and sensory quality of fresh cut broccoli (Brassica oleracea L.). Journal of food sci-ence, 76(6), M367–M374. https://doi.org/10.1111/j.1750-3841.2011.02210.x

16. Mujtaba, M., Morsi, R. E., Kerch, G., Elsabee, M. Z., Kaya, M., Labidi, J., & Khawar, K. M. (2019). Current advancements in chitosan-based film produc-tion for food technology; A review. International journal of biological macromol-ecules, 121, 889–904. https://doi.org/10.1016/j.ijbiomac.2018.10.109

17. Muñoz-Tebar N, Pérez-Álvarez JA, Fernández-López J, Viuda-Martos M. Chitosan Edible Films and Coatings with Added Bioactive Compounds: Antibac-terial and Antioxidant Properties and Their Application to Food Products: A Re-view. Polymers. 2023; 15(2):396. https://doi.org/10.3390/polym15020396

18. Oldyrev Danil Vyacheslavovich, Sergazieva Ol'ga Dmitrievna, YArceva Natal'ya Vasil'evna, & Bahareva Anna Aleksandrovna (2023). Poluchenie kolla-gensoderzhashchej ihtiosubstancii iz vtorichnyh rybnyh resursov. Hranenie i pererabotka sel'hozsyr'ya, (3), 181-197. doi: 10.36107/spfp.2023.451.

19. Poddenezhnyj E.N., Bojko A.A., Alekseenko A.A., Drobyshevskaya N.E., & Ureckaya O.V. (2015). Progress v poluchenii biorazlagaemyh kompozicionnyh materialov na osnove krahmala (obzor). Vestnik Gomel'skogo gosudarstvennogo tekhnicheskogo universiteta im. P. O. Suhogo, 1 (2 (61)), 31-41.

20. Pokusaeva, O. A., Dolganova, N. V., & YAkubova, O. S. (2015). Ihti-ozhelatin kak osnova s"edobnyh plenochnyh pokrytij dlya pishchevyh produk-tov. Vestnik Astrahanskogo gosudarstvennogo tekhnicheskogo universiteta. Ser-iya: Rybnoe hozyajstvo, (2), 123-128.

21. Roy, V. C., Islam, M. R., Sadia, S., Yeasmin, M., Park, J.-S., Lee, H.-J., & Chun, B.-S. (2023). Trash to Treasure: An Up-to-Date Understanding of the Valorization of Seafood By-Products, Targeting the Major Bioactive Com-pounds. Marine Drugs, 21(9), 485. https://doi.org/10.3390/md21090485

22. Ruiz-Cruz, S., Valenzuela-López, C. C., Chaparro-Hernández, S., Ornelas-Paz, J. de J., Del Toro-Sánchez, C. L., Márquez-Ríos, E., López-Mata, M. A., Ocaño-Higuera, V. M., & Valdez-Hurtado, S. (2019). Effects of chitosan-tomato plant extract edible coatings on the quality and shelf life of chicken fillets during refrigerated storage. Food Science and Technology International, 39(1), 103–111. https://doi.org/10.1590/FST.23117

23. Sergazieva Olga Dmitrievna, & Dolganova Natal'ya Vadimovna (2018). Primenenie plenok na osnove zhelatina dlya sohraneniya kachestva pishchevyh produktov. Tekhnika i tekhnologiya pishchevyh proizvodstv, 48 (1), 156-163.

24. Soliman, A. M., Teoh, S. L., & Das, S. (2022). Fish Gelatin: Current Nutri-tional, Medicinal, Tissue Repair Applications, and as a Carrier of Drug Delivery. Current pharmaceutical design, 28(12), 1019–1030. https://doi.org/10.2174/1381612828666220128103725

25. Suvorov Oleg Aleksandrovich, Ipatova Larisa Grigor'evna, Pogorelova Mariya Aleksandrovna, Pesockaya Dar'ya Andreevna, Safonov Maksim Ser-geevich, & Pogorelov Aleksandr Grigor'evich (2023). Plenki iz hitozana: modi-fikaciya, primenenie i funkcionalizaciya elektrohimicheski aktivirovannym vod-nym rastvorom. Hranenie i pererabotka sel'hozsyr'ya, (3), 13-27. doi: 10.36107/spfp.2023.448.


Supplementary files

Review

For citations:


Sergazieva O.D., Eremeeva S.V., Oldyrev D.V. Justified Extension of Shelf Life of Products Stored in a Collagen-Containing Ichthyosubstance-Based Edible Film. Storage and Processing of Farm Products. 2025;33(2). https://doi.org/10.36107/spfp.2025.2.651

Views: 36


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)