Preview

Storage and Processing of Farm Products

Advanced search

Functional Properties of Rapeseed Protein Hydrolysates: A Systematic Review of Their Biological Activity and Applications

https://doi.org/10.36107/spfp.2025.2.656

Abstract

Introduction: Vegetable oils are widely used in various industries, which stimulates the growth of oilseed production. Rapeseed crops are expanding especially rapidly, for which Russia is one of the ten world leaders. At the same time, by-products of rapeseed processing (oilcakes and meal) containing more than 40% protein remain an underestimated resource for obtaining protein preparations. The study of rapeseed protein hydrolysates containing biologically active peptides is of particular interest to the food, feed, and pharmaceutical industries.

Purpose: To summarize and systematize current scientific data on rapeseed protein hydrolysates, including production methods, identified biological activities, and potential areas of application. The analysis places particular emphasis on studies reporting peptides with antioxidant, antimicrobial, antihypertensive, DPP-IV-inhibitory, and anticancer activities. 

Materials and Methods: The systematic review is based on an analysis of scientific publications published between 2014 and 2025 in peer-reviewed journals indexed in international and national databases. Sources were selected using search engines such as Google Scholar, PubMed, ScienceDirect, SpringerLink, and the Russian Science Citation Index (RSCI). The inclusion criteria comprised thematic relevance, scientific novelty, and publication in journals recognized by established citation indices. The review incorporates both experimental studies conducted in vitro and in vivo, as well as research based on in silico modeling methods. The process of source identification, selection, systematization, and analysis is presented using a PRISMA flow diagram.

Results: It has been established that rapeseed protein hydrolysates can serve as valuable functional ingredients in food products, aquaculture feeds and sources of bioactive compounds. The influence of hydrolysis methods on their functional and technological properties, as well as the potential for replacing traditional protein components, is discussed. Promising areas of further research have been identified, including the use of new enzyme preparations and bioinformatics approaches for the identification of biologically active peptides.

Conclusion: Rapeseed protein hydrolysates have significant potential for use in various industries. Further research should be aimed at optimizing the methods of their preparation, in-depth study of the mechanisms of biological activity and expanding the areas of practical application. The development of new rapeseed protein processing technologies can contribute to the creation of innovative products with improved functional properties.

About the Authors

Irina M. Chernukha
Federal State Budgetary Scientific Institution «V.M. Gorbatov Federal Research Center for Food Systems» of the Russian Academy of Sciences
Russian Federation

Chief Research Scientist, V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, SPIN: 3423-3754



Sergey L. Tikhonov
Ural State Agrarian University
Russian Federation

Head of the Department of Food Engineering for Agricultural Production, Ural State Agrarian University, SPIN: 4649-8616



Ivan A. Degtyarev
Russian Biotechnological University (ROSBIOTECH)
Russian Federation

Graduate student, Department of Biotechnology and Bioorganic Synthesis, Russian Biotechnological University, SPIN: 9200-9527



Ivan A. Fomenko
Russian Biotechnological University
Russian Federation

Docent, Department of Biotechnology and Bioorganic Synthesis, Russian Biotechnological University (ROSBIOTECH), SPIN: 5861-2838



Ilya A. Detinkin
Russian Biotechnological University
Russian Federation

Master’s student, Department of Biotechnology and Bioorganic Synthesis, Russian Biotechnological University (ROSBIOTECH), SPIN: 4596-4802



References

1. Гончаров, С. В., & Горлова, Л. А. (2018). Масличные культуры: новые вызовы и тенденции их развития. Масличные культуры, (2 (174)), 96-100. https://doi.org/10.220/212–608Х–201–2–1––100

2. Горлова, Л. А., Бочкарева, Э. Б., Сердюк, В. В., & Ефименко, С. Г. (2017). Направления и результаты селекции рапса и сурепицы во ВНИИМК. Известия Тимирязевской сельскохозяйственной академии, (2), 20-33.

3. Зинченко, Д. В., Муранова, Т. А., Меланьина, Л. А., & Мирошников, А. И. (2019). Гидролиз белков сои и рапса экстрактом из пилорических придатков трески. Прикладная биохимия и микробиология, 55(2), 172-180. https://doi.org/10.1134/S0555109919020181

4. Зинченко, Д. В., Муранова, Т. А., Меланьина, Л. А., Белова, Н. А., & Мирошников, А. И. (2018). ГИДРОЛИЗ БЕЛКОВ СОИ И РАПСА ФЕРМЕНТНЫМ ПРЕПАРАТОМ ПРОТОСУБТИЛИН. Прикладная биохимия и микробиология, 54(3), 277-285. https://doi.org/10.7868/S0555109918030066

5. Зыбалов, В. С. (2019). Яровой рапс-культура больших возможностей на Южном Урале. АПК России, 26(5), 755.

6. Кудинова, М. Г., Шевчук, Н. А., Корнева, Г. В., Захарова, Е. В., & Горбатко, Е. С. (2023). Экономическая эффективность производства рапса, как высокомаржинальной культуры региона, и роль SWOT-анализа в его научно-технологическом форсайте. Инновации и инвестиции, (2), 202-209.

7. Поморова, Ю. Ю., Пятовский, В. В., Бескоровайный, Д. В., & Болховитина, Ю. С. (2019). Характеристика, методы выделения белковой фракции семян основных масличных культур (обзор). Масличные культуры, (4 (180)), 161-169. https://doi.org/10.25230/2412–608Х–2019–4–180–161–169.

8. Alashi, A. M., Blanchard, C. L., Mailer, R. J., Agboola, S. O., Mawson, J. A., & Aluko, R. E. (2018). Influence of enzymatic hydrolysis, pH and storage temperature on the emulsifying properties of canola protein isolate and hydrolysates. International Journal of Food Science & Technology, 53(10), 2316-2324. https://doi.org/10.1111/ijfs.13823

9. Arrutia, F., Binner, E., Williams, P., & Waldron, K. W. (2020). Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends in Food Science & Technology, 100, 88-102. https://doi.org/10.1016/j.tifs.2020.03.044

10. Beaubier, S., Durand, E., Lenclume, C., Fine, F., Aymes, A., Framboisier, X., ... & Villeneuve, P. (2023). Chelating peptides from rapeseed meal protein hydrolysates: identification and evaluation of their capacity to inhibit lipid oxidation. Food Chemistry, 422, 136187. https://doi.org/10.1016/j.foodchem.2023.136187

11. Beaubier, S., Pineda-Vadillo, C., Mesieres, O., Framboisier, X., Galet, O., & Kapel, R. (2023). Improving the in vitro digestibility of rapeseed albumins resistant to gastrointestinal proteolysis while preserving the functional properties using enzymatic hydrolysis. Food Chemistry, 407, 135132. https://doi.org/10.1016/j.foodchem.2022.135132

12. Bermejo-Cruz, M., Osorio-Ruiz, A., Rodríguez-Canto, W., Betancur-Ancona, D., Martínez-Ayala, A., & Chel-Guerrero, L. (2023). Antioxidant potential of protein hydrolysates from canola (Brassica napus L.) seeds. Biocatalysis and Agricultural Biotechnology, 50, 102687.Bermejo-Cruz, M., Osorio-Ruiz, A., Rodríguez-Canto, W., Betancur-Ancona, D., Martínez-Ayala, A., & Chel-Guerrero, L. (2023). Antioxidant potential of protein hydrolysates from canola (Brassica napus L.) seeds. Biocatalysis and Agricultural Biotechnology, 50, 102687. https://doi.org/10.1016/j.bcab.2023.102687

13. Betchem, G., Dabbour, M., Tuly, J. A., Lu, F., Liu, D., Monto, A. R., ... & Ma, H. (2024). Effect of magnetic field‐assisted fermentation on the in vitro protein digestibility and molecular structure of rapeseed meal. Journal of the Science of Food and Agriculture, 104(7), 3883-3893. https://doi.org/10.1002/jsfa.13269

14. Canistro, D., Vivarelli, F., Ugolini, L., Pinna, C., Grandi, M., Antonazzo, I. C., ... & Biagi, G. (2017). Digestibility, toxicity and metabolic effects of rapeseed and sunflower protein hydrolysates in mice. Italian Journal of Animal Science, 16(3), 462-473. https://doi.org/10.1080/1828051X.2017.1298410

15. Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S., & Marc, I. (2007). Hydrolysis of rapeseed protein isolates: Kinetics, characterization and functional properties of hydrolysates. Process Biochemistry, 42(10), 1419-1428. https://doi.org/10.1016/j.procbio.2007.07.009

16. Chmielewska, A., Kozłowska, M., Rachwał, D., Wnukowski, P., Amarowicz, R., Nebesny, E., & Rosicka-Kaczmarek, J. (2021). Canola/rapeseed protein–nutritional value, functionality and food application: a review. Critical Reviews in Food Science and Nutrition, 61(22), 3836-3856. https://doi.org/10.1080/10408398.2020.1809342

17. Daroit, D. J., & Brandelli, A. (2021). In vivo bioactivities of food protein-derived peptides–a current review. Current Opinion in Food Science, 39, 120-129. https://doi.org/10.1016/j.cofs.2021.01.002

18. Daszkiewicz, T. (2022). Food production in the context of global developmental challenges. Agriculture, 12(6), 832. https://doi.org/10.3390/agriculture12060832

19. Duan, X., Dong, Y., Zhang, M., Li, Z., Bu, G., & Chen, F. (2023). Identification and molecular interactions of novel ACE inhibitory peptides from rapeseed protein. Food Chemistry, 422, 136085. https://doi.org/10.1016/j.foodchem.2023.136085

20. Duan, X., Zhang, M., & Chen, F. (2021). Prediction and analysis of antimicrobial peptides from rapeseed protein using in silico approach. Journal of Food Biochemistry, 45(4), e13598. https://doi.org/10.1111/jfbc.13598

21. Durand, E., Beaubier, S., Fine, F., Villeneuve, P., & Kapel, R. (2021). High metal chelating properties from rapeseed meal proteins to counteract lipid oxidation in foods: controlled proteolysis and characterization. European Journal of Lipid Science and Technology, 123(6), 2000380. https://doi.org/10.1002/ejlt.202000380

22. Ebrahimnezhadarabi, M. R., Changizi, R., Hoseinifard, S. M., Vatandoust, S., & Ghobadi, S. (2021). Research Article Effects of canola protein hydrolysate (CPH) on growth performance, blood biochemistry, immunity, and gastrointestinal microbiota of beluga (Huso huso) juveniles. Iranian Journal of Fisheries Sciences, 20(4), 1165-1178. https://doi.org/10.22092/ijfs.2021.124567

23. Etemadian, Y., Ghaemi, V., Shaviklo, A. R., Pourashouri, P., Mahoonak, A. R. S., & Rafipour, F. (2021). Development of animal/plant-based protein hydrolysate and its application in food, feed and nutraceutical industries: State of the art. Journal of Cleaner Production, 278, 123219. https://doi.org/10.1016/j.jclepro.2020.123219

24. Ferrero, R. L., Soto-Maldonado, C., Weinstein-Oppenheimer, C., Cabrera-Muñoz, Z., & Zúñiga-Hansen, M. E. (2021). Antiproliferative rapeseed defatted meal protein and their hydrolysates on MCF-7 breast cancer cells and human fibroblasts. Foods, 10(2), 309. https://doi.org/10.3390/foods10020309

25. Fetzer, A., Herfellner, T., Stäbler, A., Menner, M., & Eisner, P. (2018). Influence of process conditions during aqueous protein extraction upon yield from pre-pressed and cold-pressed rapeseed press cake. Industrial Crops and Products, 112, 236-246. https://doi.org/10.1016/j.indcrop.2017.12.011

26. Fetzer, A., Müller, K., Schmid, M., & Eisner, P. (2020). Rapeseed proteins for technical applications: Processing, isolation, modification and functional properties–A review. Industrial Crops and Products, 158, 112986. https://doi.org/10.1016/j.indcrop.2020.112986

27. Gerzhova, A., Mondor, M., Benali, M., & Aider, M. (2016). Study of total dry matter and protein extraction from canola meal as affected by the pH, salt addition and use of zeta-potential/turbidimetry analysis to optimize the extraction conditions. Food Chemistry, 201, 243-252. https://doi.org/10.1016/j.foodchem.2016.01.074

28. Grossi, G., Goglio, P., Vitali, A., & Williams, A. G. (2019). Livestock and climate change: impact of livestock on climate and mitigation strategies. Animal Frontiers, 9(1), 69-76. https://doi.org/10.1093/af/vfy034

29. Halmemies-Beauchet-Filleau, A., Rinne, M., Lamminen, M., Mapato, C., Ampapon, T., Wanapat, M., & Vanhatalo, A. (2018). Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. Animal, 12(s2), s295-s309. https://doi.org/10.1017/S1751731118002252

30. Han, R., Álvarez, A. J. H., Maycock, J., Murray, B. S., & Boesch, C. (2021). Comparison of alcalase-and pepsin-treated oilseed protein hydrolysates–Experimental validation of predicted antioxidant, antihypertensive and antidiabetic properties. Current Research in Food Science, 4, 141-149. https://doi.org/10.1016/j.crfs.2021.03.001

31. Han, R., Maycock, J., Murray, B. S., & Boesch, C. (2019). Identification of angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory peptides derived from oilseed proteins using two integrated bioinformatic approaches. Food research international, 115, 283-291. https://doi.org/10.1016/j.foodres.2018.12.015

32. He, R., Girgih, A. T., Malomo, S. A., Ju, X., & Aluko, R. E. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods, 5(1), 219-227. https://doi.org/10.1016/j.jff.2012.10.008

33. He, R., Girgih, A. T., Rozoy, E., Bazinet, L., Ju, X. R., & Aluko, R. E. (2016). Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes. Food Chemistry, 197, 1008-1014. https://doi.org/10.1016/j.foodchem.2015.11.081

34. He, R., Malomo, S. A., Alashi, A., Girgih, A. T., Ju, X., & Aluko, R. E. (2013). Purification and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides. Journal of Functional Foods, 5(2), 781-789. https://doi.org/10.1016/j.jff.2013.01.024

35. He, R., Malomo, S. A., Girgih, A. T., Ju, X., & Aluko, R. E. (2013). Glycinyl-histidinyl-serine (GHS), a novel rapeseed protein-derived peptide has blood pressure-lowering effect in spontaneously hypertensive rats. Journal of agricultural and food Chemistry, 61(35), 8396-8402. https://doi.org/10.1021/jf400865m

36. He, R., Yang, Y. J., Wang, Z., Xing, C. R., Yuan, J., Wang, L. F., ... & Ju, X. R. (2019). Rapeseed protein-derived peptides, LY, RALP, and GHS, modulates key enzymes and intermediate products of renin–angiotensin system pathway in spontaneously hypertensive rat. NPJ science of food, 3(1), 1. https://doi.org/10.1038/s41538-018-0033-5

37. Ibáñez, M. A., De Blas, C., Cámara, L., & Mateos, G. G. (2020). Chemical composition, protein quality and nutritive value of commercial soybean meals produced from beans from different countries: A meta-analytical study. Animal Feed Science and Technology, 267, 114531. https://doi.org/10.1016/j.anifeedsci.2020.114531

38. Ji, T., Xu, G., Wu, Y., Wang, Y., Xiao, C., Zhang, B., ... & Xu, F. (2024). Amelioration of Type 2 Diabetes Mellitus Using Rapeseed (Brassica napus)-Derived Peptides through Stimulating Calcium-Sensing Receptor: Effects on Glucagon-Like Peptide-1 Secretion and Hepatic Lipid Metabolism. Journal of Agricultural and Food Chemistry, 72(43), 23804-23818. https://doi.org/10.1021/acs.jafc.4c03987

39. Kaiser, F., Harbach, H., & Schulz, C. (2022). Rapeseed proteins as fishmeal alternatives: A review. Reviews in Aquaculture, 14(4), 1887-1911. https://doi.org/10.1111/raq.12678

40. Kaiser, F., Harloff, H. J., Tressel, R. P., Kock, T., & Schulz, C. (2021). Effects of highly purified rapeseed protein isolate as fishmeal alternative on nutrient digestibility and growth performance in diets fed to rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 27(5), 1352-1362. https://doi.org/10.1111/anu.13273

41. Kaugarenia, N., Beaubier, S., Durand, E., Aymes, A., Villeneuve, P., Lesage, F., & Kapel, R. (2022). Optimization of selective hydrolysis of cruciferins for production of potent mineral chelating peptides and napins purification to valorize total rapeseed meal proteins. Foods, 11(17), 2618. https://doi.org/10.3390/foods11172618

42. Kotecka-Majchrzak, K., Sumara, A., Fornal, E., & Montowska, M. (2020). Oilseed proteins – Properties and application as a food ingredient. Trends in Food Science & Technology, 106,

43. Kotecka‐Majchrzak, K., Sumara, A., Fornal, E., & Montowska, M. (2021). Proteomic analysis of oilseed cake: a comparative study of species‐specific proteins and peptides extracted from ten seed species. Journal of the Science of Food and Agriculture, 101(1), 297-306. https://doi.org/10.1002/jsfa.10643

44. Marczak, E. D., Usui, H., Fujita, H., Yang, Y., Yokoo, M., Lipkowski, A. W., & Yoshikawa, M. (2003). New antihypertensive peptides isolated from rapeseed. Peptides, 24(6), 791-798. https://doi.org/10.1016/S0196-9781(03)00174-8

45. Muranova, T. A., Zinchenko, D. V., Kononova, S. V., Belova, N. A., & Miroshnikov, A. I. (2017). Plant protein hydrolysates as fish fry feed in aquaculture. Hydrolysis of rapeseed proteins by an enzyme complex from king crab hepatopancreas. Applied Biochemistry and Microbiology, 53, 680-687. https://doi.org/10.1134/S0003683817060102

46. Östbring, K., Malmqvist, E., Nilsson, K., Rosenlind, I., & Rayner, M. (2019). The effects of oil extraction methods on recovery yield and emulsifying properties of proteins from rapeseed meal and press cake. Foods, 9(1), 19. https://doi.org/10.3390/foods9010019

47. Pan, M., Jiang, T. S., & Pan, J. L. (2011). Antioxidant activities of rapeseed protein hydrolysates. Food and Bioprocess Technology, 4, 1144-1152. https://doi.org/10.1007/s11947-009-0206-y

48. Perera, S. P., McIntosh, T. C., & Wanasundara, J. P. (2016). Structural properties of cruciferin and napin of Brassica napus (canola) show distinct responses to changes in pH and temperature. Plants, 5(3), 36. https://doi.org/10.3390/plants5030036

49. Pérez-Gálvez, R., Berraquero-García, C., Ospina-Quiroga, J. L., Espejo-Carpio, F. J., Almécija, M. C., Guadix, A., ... & Guadix, E. M. (2024). Influence of In Vitro Digestion on Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Activity of Plant-Protein Hydrolysates Obtained from Agro-Industrial By-Products. Foods, 13(17), 2691. https://doi.org/10.3390/foods13172691

50. Raboanatahiry, N., Li, H., Yu, L., & Li, M. (2021). Rapeseed (Brassica napus): Processing, utilization, and genetic improvement. Agronomy, 11(9), 1776. http://dx.doi.org/10.3390/agronomy11091776

51. Sá, A. G. A., Moreno, Y. M. F., & Carciofi, B. A. M. (2020). Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology, 97, 170-184. https://doi.org/10.1016/j.tifs.2020.01.011

52. Singh, R., Langyan, S., Sangwan, S., Rohtagi, B., Khandelwal, A., & Shrivastava, M. (2022). Protein for human consumption from oilseed cakes: a review. Frontiers in Sustainable Food Systems, 6, 856401. https://doi.org/10.3389/fsufs.2022.856401

53. Tang, H., Feng, G., Zhao, J., Ouyang, Q., Liu, X., Jiang, X., ... & Yin, Y. (2024). Determination and Prediction of Amino Acid Digestibility in Rapeseed Cake for Growing-Finishing Pigs. Animals, 14(19), 2764. https://doi.org/10.3390/ani14192764

54. Turner, J. M., & Kodali, R. (2020). Should angiotensin-converting enzyme inhibitors ever be used for the management of hypertension?. Current Cardiology Reports, 22, 1-8. https://doi.org/10.1007/s11886-020-01352-8

55. Van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494-501. https://doi.org/10.1038/s43016-021-00322-9

56. Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., & Millán, F. (2000). Partially hydrolyzed rapeseed protein isolates with improved functional properties. Journal of the American Oil Chemists' Society, 77, 447-450. https://doi.org/10.1007/s11746-000-0072-y

57. Volk, C., Brandsch, C., Schlegelmilch, U., Wensch-Dorendorf, M., Hirche, F., Simm, A., ... & Stangl, G. I. (2020). Postprandial metabolic response to rapeseed protein in healthy subjects. Nutrients, 12(8), 2270. https://doi.org/10.3390/nu12082270

58. Wanasundara, J. P. (2011). Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Critical reviews in food science and nutrition, 51(7), 635-677. https://doi.org/10.1080/10408391003749942

59. Wanasundara, J. P., Kapel, R., & Albe-Slabi, S. (2024). Proteins from canola/rapeseed—current status. In Sustainable protein sources (pp. 285-309). Academic Press. https://doi.org/10.1016/B978-0-323-91652-3.00004-6

60. Wang, H., Huang, J., Yang, M., Zhou, Y., Yin, J., Yan, Y., & Xie, N. (2023). A novel zinc-chelating peptide identified from rapeseed (Brassica napus) protein hydrolysate: insights into its zinc-binding sites by density functional theory. International Journal of Food Science and Technology, 58(10), 5203-5213. https://doi.org/10.1111/ijfs.16622

61. Wang, L., Zhang, J., Yuan, Q., Xie, H., Shi, J., & Ju, X. (2016). Separation and purification of an anti-tumor peptide from rapeseed (Brassica campestris L.) and the effect on cell apoptosis. Food & function, 7(5), 2239-2248. https://doi.org/10.1039/C6FO00042H

62. Wang, Q., Dong, X., Castañeda-Reyes, E. D., Wu, Y., Zhang, S., Wu, Z., ... & Xu, F. (2024). Chitosan and sodium alginate nanocarrier system: controlling the release of rapeseed-derived peptides and improving their therapeutic efficiency of anti-diabetes. International Journal of Biological Macromolecules, 265, 130713. https://doi.org/10.1016/j.ijbiomac.2024.130713

63. Wang, Y., Cao, K., Li, H., Sun, H., & Liu, X. (2022). Improvement of active peptide yield, antioxidant activity and anti-aging capacity of rapeseed meal fermented with YY-112 pure fermentation and co-fermentation. Food Bioscience, 49, 101938. https://doi.org/10.1016/j.fbio.2022.101938

64. Wang, Y., Li, Y., Ruan, S., Lu, F., Tian, W., & Ma, H. (2021). Antihypertensive effect of rapeseed peptides and their potential in improving the effectiveness of captopril. Journal of the Science of Food and Agriculture, 101(7), 3049-3055. https://doi.org/10.1002/jsfa.10939

65. Wang, Y., Sun, H., & Liu, X. (2022). A novel fermented rapeseed meal, inoculated with selected protease-assisting screened B. subtilis YY-4 and L. plantarum 6026, showed high availability and strong antioxidant and immunomodulation potential capacity. Foods, 11(14), 2118. https://doi.org/10.3390/foods11142118

66. Wnukowski, P., Veerman, C., & Smolders, G. J. F. (2015). U.S. Patent Application No. 14/234,741.

67. Woźniak, E., Waszkowska, E., Zimny, T., Sowa, S., & Twardowski, T. (2019). The rapeseed potential in Poland and Germany in the context of production, legislation, and intellectual property rights. Frontiers in plant science, 10, 1423. https://doi.org/10.3389/fpls.2019.01423

68. Xie, H., Wang, Y., Zhang, J., Chen, J., Wu, D., & Wang, L. (2015). Study of the fermentation conditions and the antiproliferative activity of rapeseed peptides by bacterial and enzymatic cooperation. International Journal of Food Science & Technology, 50(3), 619-625. https://doi.org/10.1111/ijfs.12682

69. Xu, F., Mejia, E. G. D., Chen, H., Rebecca, K., Pan, M., He, R., ... & Ju, X. (2020). Assessment of the DPP‐IV inhibitory activity of a novel octapeptide derived from rapeseed using Caco‐2 cell monolayers and molecular docking analysis. Journal of Food Biochemistry, 44(10), e13406. https://doi.org/10.1111/jfbc.13406

70. Xu, F., Wang, L., Ju, X., Zhang, J., Yin, S., Shi, J., ... & Yuan, Q. (2017). Transepithelial transport of YWDHNNPQIR and its metabolic fate with cytoprotection against oxidative stress in human intestinal Caco-2 cells. Journal of Agricultural and Food Chemistry, 65(10), 2056-2065. https://doi.org/10.1021/acs.jafc.6b04731

71. Xu, F., Yao, Y., Xu, X., Wang, M., Pan, M., Ji, S., ... & Wang, L. (2019). Identification and quantification of DPP-IV-inhibitory peptides from hydrolyzed-rapeseed-protein-derived napin with analysis of the interactions between key residues and protein domains. Journal of agricultural and food chemistry, 67(13), 3679-3690. https://doi.org/10.1021/acs.jafc.9b01069

72. Yang, F., Huang, J., He, H., Ju, X., Ji, Y., Deng, F., ... & He, R. (2023). Study on the hypolipidemic activity of rapeseed protein-derived peptides. Food Chemistry, 423, 136315. https://doi.org/10.1016/j.foodchem.2023.136315

73. Yao, M., Xu, F., Yao, Y., Wang, H., Ju, X., & Wang, L. (2022). Assessment of novel oligopeptides from rapeseed napin (Brassica napus) in protecting HepG2 cells from insulin resistance and oxidative stress. Journal of Agricultural and Food Chemistry, 70(39), 12418-12429. https://doi.org/10.1021/acs.jafc.2c03718

74. Yao, M., Yao, Y., Qin, B., Pan, M., Ju, X., Xu, F., & Wang, L. (2022). Screening and identification of high bioavailable oligopeptides from rapeseed napin (Brassica napus) protein-derived hydrolysates via Caco-2/HepG2 co-culture model. Food Research International, 155, 111101. https://doi.org/10.1016/j.foodres.2022.111101

75. You, H., Zhang, Y., Wu, T., Li, J., Wang, L., Yu, Z., ... & Ding, L. (2022). Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. Lwt, 160, 113255. https://doi.org/10.1016/j.lwt.2022.113255

76. Zhang, M., Yan, Z., Bu, L., An, C., Wang, D., Liu, X., ... & Zhang, B. (2018). Rapeseed protein-derived antioxidant peptide RAP alleviates renal fibrosis through MAPK/NF-κB signaling pathways in diabetic nephropathy. Drug design, development and therapy, 1255-1268. https://doi.org/10.2147/dddt.s162288

77. Zhang, Z., He, S., Liu, H., Sun, X., Ye, Y., Cao, X., ... & Sun, H. (2020). Effect of pH regulation on the components and functional properties of proteins isolated from cold-pressed rapeseed meal through alkaline extraction and acid precipitation. Food chemistry, 327, 126998. https://doi.org/10.1016/j.foodchem.2020.126998

78. Zhao, Q., Xu, H., Hong, S., Song, N., Xie, J., Yan, Z., ... & Jiang, X. (2018). Rapeseed protein-derived antioxidant peptide RAP ameliorates nonalcoholic steatohepatitis and related metabolic disorders in mice. Molecular Pharmaceutics, 16(1), 371-381. https://doi.org/10.1021/acs.molpharmaceut.8b01030


Review

For citations:


Chernukha I.M., Tikhonov S.L., Degtyarev I.A., Fomenko I.A., Detinkin I.A. Functional Properties of Rapeseed Protein Hydrolysates: A Systematic Review of Their Biological Activity and Applications. Storage and Processing of Farm Products. 2025;33(2). https://doi.org/10.36107/spfp.2025.2.656

Views: 40


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)