Technology of Obtaining Pellets from Canola Seed Using a Two-Stage Cascading Vaporcompression Heat Pump
https://doi.org/10.36107/spfp.2020.390
Abstract
The need for rational and integrated use of energy resources and the implementation of solutions to save them is determined by a decrease in the energy intensity of technological processes, which can be provided by replacing non-renewable energy resources with renewable energy sources using heat pump technologies. An energy-saving technology for producing pellets from oilseed cake using a two-stage steam compression heat pump to obtain energy carriers of different temperature potentials, which reduces specific energy consumption due to maximum recovery and disposal of waste heat carriers in closed thermodynamic cycles, was developed in the article. The heat exchange process occurs in two circuits: in the recirculation circuit of a low-grade heat carrier, including the supply of cooled air from the evaporator to the air coolers; in the recirculation circuit of the high-potential heat carrier, including the supply of superheated steam from the second-stage condenser to the screw extruder and recuperative heat exchangers, a tumble dryer and decanter, and a ten-tank toaster; evaporators; oilseed meal trap; vacuum apparatus. An exergy analysis was performed for each of the two recirculation circuits, and the functional dependences of the exergy flows exiting the technological equipment in question on the acting variables were obtained. Feed pellets from rapeseed, obtained with minimal energy consumption meet the requirements of National Standard 23513–79. The proposed technology for producing pellets from rapeseed allowed to reduce specific energy consumption by 12–15%; increase environmental safety at all stages of the technological process, minimize the emission of waste heat carriers into the atmosphere.
About the Authors
A. OstrikovRussian Federation
Alexander N. Ostrikov
19, Prospect Revolution, Voronezh, 394036
A. Shevtsov
Russian Federation
Alexander A. Shevtsov
54 «A», Starykh Bolshevikov St., Voronezh, 394064
T. Tertychnaya
Russian Federation
Tatyana N. Tertychnaya
1, Michurin St., Voronezh, 394087
N. Serdyukova
Russian Federation
Natalya A. Serdyukova
54 «A», Starykh Bolshevikov St., Voronezh, 394064
References
1. Abil’dinova S.K., Musabekov R.A., Rasmuk hame tova A.S., Chicherin S.V. Otsenka energeticheskoi effektivnosti tsikla teplovogo nasosa so stupenchatym szhatiem [Assessment of the energy efficiency of the heat pump cycle with step compression]. Energetika. Izvestiya vysshikh uchebnykh zave-denii i energeticheskikh ob»edineii S.G.[Energy. News of higher educational institutions and energy associations of the UIS, 2019, vol. 62, no. 3, pp, 293–302. https://doi.org/10.21122/1029–7448–2019–62–3-293–302
2. Alekseenko S.V. Issledovaniya i razrabotki SO RAN v oblasti energoeffektivnykh tekhnologii [Research and development of SB RAS in the field of energy efficient technologies]. Novosibirsk: Nauka, 2009. 405 p.
3. Britikov D.A., Shevtsov A.A.Energosberezhenie v protsessakh sushki zernovykh kul’tur s ispol’zovaniem teplonasosnykh tekhnologii [Energy saving in grain drying processes using heat pump technologies: monograph]. Moscow: D.L. plyus, 2012, 328 p.
4. Gorshkov V.G. Teplovye nasosy. Analiticheskii obzor [Heat pump. Analytical review]. Spravochnik promyshlennogo oborudovaniya V.T.[Handbook of industrial weapons and military equipment], 2004, no. 2, pp. 47–80.
5. Dolinskii A.A., Draganov B.K.., Morozyuk T.V. Al’ternativnoe teplo-snabzhenie na baze teplovykh nasosov: kriterii otsenki [Alternative heat supply based on heat pumps: evaluation criteria]. Promyshlenaya teplotekhnika[Industrial thermotechnics], 2007, no. 6, pp. 67–71.
6. Elistratov S.L. Otsenka granits tekhniko-ekonomicheskoi effektivnosti primeneniya teplovykh nasosov [Assessment of the boundaries of technical and economic efficiency of heat pumps]. Vestnik Y.U.GU[Bulletin Of S.S.], 2009, no. 15, pp. 72–78.
7. Elistratov S.L., Nakoryakov V. E. Peredovye skhemnye resheniya teplona-sosnykh ustanovok [Advanced circuit solutions for heat pump installations]. Izvestiya Vuzov[News Of Universities], 2007, no. 11–12, pp. 64–75.
8. Elistratov S.L., Nakoryakov V.E. Energeticheskaya effektivnost’ kombinirovannykh otopitel’nykh ustanovok na baze teplovykh nasosov s elektroprivodom [Energy efficiency of combined heating installations based on electric heat pumps]. Promyshlennaya energetika[Industrial power engineering], 2008, no. 3, pp., 28–33.
9. Elistratov S.L., Nakoryakov V.E. Ekologicheskie aspekty primeneniya parokompressionnykh teplovykh nasosov [Environmental aspects of the use of steam compression heat pumps]. Izvestiya R.N.[Izvestiya RAS, 2007, no. 4, pp. 76–83.
10. Zakirov D.G., Mukhamedshin M.A., Nikolaev A.V., Faizrakhmanov R.A., Ryumkin A.A. Razrabotka i vnedrenie tekhnologii ispol’zovaniya nizkopotentsial’nogo tepla teplovymi nasosami [Development and implementation of technologies for using low-potential heat by heat pumps]. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva [Technologies and technical means of mechanized production of crop and livestock products], 2018, vol. 94, no. 1, pp. 85–90.
11. Aldazhumanov Zh.K., Ermolenko M.V., Stepanova O.A., Toimbaev A.B., Dolzhikov S.A. Issle dovanie raboty teplovogo nasosa s regenerativnym teploobmennikom na osnove eksergeticheskogo analiza [Assessment of the energy efficiency of the heat pump cycle with step compression]. Molodoi uchenyi[Molodoj uchenyj], 2015, no. 10(90), pp. 128–132.
12. Kalnin’ I.M., Fadekov K.N. Otsenka effektivnosti termodinamicheskikh tsiklov parokompressionnykh kholodil’nykh mashin i teplovykh naso-sov [Evaluation of the efficiency of thermodynamic cycles of steam compression refrigerating machines and heat pumps]. Kholodil’naya tekhnika [Refrigeration equipment], 2006, no. 3, pp. 16–24.
13. Kurnakova N.Y.., Nuzhdin A.V., Volkhonskii A.A. O vozmozhnosti povysheniya energoeffektivnosti teplovoi skhemy T.S.s primeneniem teplovogo nasosa [About the possibility of improving the energy efficiency of the thermal scheme of a H.S.using a heat pump]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta[Irkutsk State Technical University Bulletin], 2018, vol. 22, no. 7, pp. 114–122.
14. Matsevityi Yu.M., Chirkin N.B., Kuznetsov M.A. Termoekonomicheskii analiz teplonasosnoi sistemy teplosnabzheniya [Thermoeconomical analysis of the heat pump system of heat supply]. Problemy mashinostroeniya[Mechanical engineering problems], 2010, vol. 13, no. 1, pp. 42–51.
15. Ostrikov A.N., Shevtsov A.A., Tertychnaya T.N., Serdyukova N.A. Eksergeticheskii analiz tekhnologii polucheniya biodizel’nogo topliva iz rapsovogo masla [Exergetic analysis of biodiesel production technology from rapeseed oil]. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologii[Voronezh State University of Engineering Technologies Bulletin]. 2020, vol. 82, no. 1, pp., 252–261. https://doi.org/10.20914/2310–1202–2020–1-252–261
16. Podskrebkin A.D., Dyagelev V.F. Opyt ispol’zovaniya teplovykh nasosov v mire i Rossii [Experience in using heat pumps in the world and Russia]. Sovremennaya nauka: aktual’nye problemy teorii i praktiki, pp.eriya: Estestvennye i tekhnicheskie nauki[Modern science: actual problems of theory and practice. Series: Natural and technical Sciences. Publishing house. Scientific technology], 2016, no. 4, pp. 15–21.
17. Kalnin’ I.M., Leguenko S.K., Protsenko V.P. Pustovalov S.B., Sa-vitskii I.A. Teplonasosnaya tekhnologiya v reshenii krupnomasshtabnykh zadach teplofikatsii s ispol’zovaniem nizkopotentsial’noi teploty energoistochnikov [Evaluation of the efficiency of thermodynamic cycles of steam compression refrigerating machines and heat pumps]. Energosberezhenie i vodopodgotovka[Refrigeration equipment], 2009, no. 5(61), pp., 25–30.
18. Shevtsov A.A., Bunin E.S., Tkach V.V., Serdyu kova N.A., Fofonov D.I. Effektivnoe vnedrenie parokompressionnogo teplovogo nasosa v liniyu kompleksnoi pererabotki semyan maslichnykh kul’tur [Effective implementation of a steam compression heat pump in the line of complex processing of oilseeds]. Khranenie i pererabotka sel’khozsyr’ya[Storage and processing of farm products], 2018, no. 1, pp. 60–64.
19. Chicherin S. Low-Temperature District Heating Distributed from Transmission-Distribution Junctions to Users: Energy and Environmental Modelling. Energy Procedia, 2018, vol. 147, pp. 382–389. https://doi.org/10.1016/j.egypro.2018.07.107
20. Chicherin S.V. Comparison of a District Heating System Operation Based on Actual Data – Omsk City, Russia, Case Study. International Journal of Sustainable Energy, 2018, vol. 38, no. 6, pp. 603–614. https://doi.org/10.1080/14786451.2018.1548466
21. Deng J. Qingpeng W., Mei L., Shi H., Hui Z. Does Heat Pumps Perform Energy Efficiently as We Expected: Field Tests and Evaluations on Various Kinds of Heat Pump Systems for Space Heating. Energy and Buildings, 2019, vol. 182, pp. 172–186. https://doi.org/10.1016/j.enbuild.2018.10.014
22. Sayegh M.A. Jadwiszczaka P., Axcellb B.P., Niemierkaa E., Bryśc K., Jouharab H. Heat Pump Placement, Connection and Operational Modes in European District Heating. Energy and Buildings, 2018, vol. 166, pp. 122–144. https://doi.org/10.1016/j.enbuild.2018.02.006
23. Vivian J., Emmi G., Zarrella A., Jobard X., Pietruschka D., De Carli M. Evaluating the Cost of Heat for End Users in Ultra Low Temperature District Heating Networks with Booster Heat Pumps. Energy, 2018, vol. 153, pp. 788–800. https://doi.org/10.1016/j.energy.2018.04.081
Review
For citations:
Ostrikov A., Shevtsov A., Tertychnaya T., Serdyukova N. Technology of Obtaining Pellets from Canola Seed Using a Two-Stage Cascading Vaporcompression Heat Pump. Storage and Processing of Farm Products. 2020;(4):22-33. (In Russ.) https://doi.org/10.36107/spfp.2020.390