About the Fluid Flow in the Centrifugal Separator
https://doi.org/10.36107/spfp.2020.231
Abstract
Features of the flw modes of viscous incompressible flid in the cavity between the two rotating cones make a big difference due to the importance of the problem of analyzing the characteristics of the kinetics of these streams for centrifugal separating equipment in the dairy, meat, microbiological and other related industries. It is obvious that to study the kinetic patterns of flid movement in a narrow gap between the two neighboring truncated cones it is necessary to have a correct apparatus of mathematical modeling of the current in this gap, bearing in mind that the flw induced by a linear source on the rotor rotation axis approximates the flw of the loosely concentrated system «liquid + solid» in the slit cavity between the separator plates. The aim in this paper: based on the laws of maintaining the pulse and mass of the liquid to obtain an asymptomatically accurate solution to the problem for the analyzed flw; on the basis of the received solution, in a criminal form, to investigate the dependence of kinetic characteristics of the flw from the current criteria; to justify the adequacy of the results of the calculation to the regime parameters of the operating equipment. In the implementation of the solution of the problem of the kinetics of a liquid flw, constructed in the form of a parametrically dependent on the criterial parameters of the functional series, an algorithm for determining the members of the constructed series is proposed in the form of an iterative procedure. On the basis of this algorithm, a numerical study was carried out with a meaningful analysis of the velocity and pressure fild of the flw under consideration according to the values of the criterion parameters characteristic of industrial separation equipment.
About the Authors
A. SlavyanskiyRussian Federation
Anatoliy A. Slavyanskiy
73, Zemlyanoy Val str., Moscow, 109004
E. Semenov
Russian Federation
Evgeniy V. Semenov
73, Zemlyanoy Val str., Moscow, 109004
V. Gribkova
Russian Federation
Vera A. Gribkova
73, Zemlyanoy Val str., Moscow, 109004
N. Nikolaeva
Russian Federation
Natalia V. Nikolaeva
73, Zemlyanoy Val str., Moscow, 109004
References
1. Aleksandrov O.E. Ideal’naya tsentrifuga [The ideal centrifuge]. Zhurnal tekhnicheskoi fiziki[Journal of technical physics], 2000, vol. 70, no. 9, pp, 24–29.
2. Aristov S.N., Knyazev D.V. Techeniya vyazkoi zhidkosti mezhdu podvizhnymi parallel’nymi ploskostyami [Flow of viscous fluid between moving parallel planes]. Izvestiya R.N. Mekhanika zhidkosti i gaza [News of the Russian Academy of Sciences. Fluid and gas mechanics], 2012, no. 4, pp. 55–61.
3. Blinov D., Ryabchuk G. Matematicheskoe modelirovanie protsessa naneseniya dvukhsloinoi obolochki: matematicheskoe modelirovanie protsessa naneseniya dvukhsloinoi obolochki na sfericheskie granuly v tsentrobezhnom pole [Mathematical modeling of the two-layer coating process]. LAP.Lambert Academic Publishing, 2011, 148 p.
4. Betchelor D. Vvedenie v dinamiku zhidkosti [Introduction to fluid dynamics]. Moscow: Mir, 1973. 758 p.
5. Zhukov V.G. Tsentrobezhnaya radial’naya fil’tratsiya v usloviyakh peremennoi pronitsaemosti poristogo osadka [Centrifugal radial filtration under conditions of variable permeability of porous sediment]. Teoreticheskie osnovy khimicheskoi tekhnologii[Theoretical foundations of chemical technology], 1991, vol, 25, no. 6, pp. 747–751.
6. Zhukov V.G., Chesnokov V.M. Davlenie v tonkosloinom potoke zhidkosti tarel’chatogo tsentrobezhnogo separatora [Pressure in the thin-layer liquid flow of the disc centrifugal separator]. Teoreticheskie osnovy khimicheskoi tekhnologii[Theoretical foundations of chemical technology], 2016, vol. 50, no. 6, pp. 683–693. https://doi.org/10.7868/S004035711606021X
7. Karamzin A.V., Semenov E.V. Kolichestvennyi analiz protsessa fraktsionirovaniya tonkodispersnykh chastits v tsentrobezhnom separatore [A quantitative analysis of the fractionation of fine particulate matter in a centrifugal separator]. Zhurnal prikladnoi khimii[Journal of Applied Chemistry], 2012, vol. 85, no. 10, pp. 1619–1624.
8. Karpychev V.A., Semenov E.V. Gidromekhanicheskie protsessy tekhnologicheskoi obrabotki molochnykh produktov [Hydro-mechanical processes of technological processing of dairy products]. Moscow: Legkaya i pishchevaya promyshlennosti, 1982. 240 p.
9. Kiryakov S.I., Mitrofanov Yu.A, pppetsial’noe tsentrobezhnoe oborudovanie dlya razdeleniya zhidkikh neodnorodnykh sred [Special centrifugal equipment for separation of liquid inhomogeneous media]. Tsvetnye metally[Nonferrous metal], 2012, no. 1, pp. 46–49.
10. Knyazev D.V. Osesimmetrichnye techeniya neszhimaemoi zhidkosti mezhdu podvizhnymi vrashchayushchimisya diskami [Axisymmetric flow of an incompressible fluid between rotating disks moving]. Izvestiya R.N. Mekhanika zhidkosti i gaza [News of the Russian Academy of Sciences. Fluid and gas mechanics], 2011, no. 4, pp. 59–66.
11. Kot Yu.D. Matematicheskie zavisimosti protsessa tsentrifugirovaniya utfelei [Mathematical dependences of the process of centrifugation of wafers]. Trudy V.I.SP[Proceedings of the all-union scientific research institute of agricultural products], 1964, vol. 12, pp. 227–237.
12. Loitsyanskii L.G.Mekhanika zhidkosti i gaza [Fluid and gas mechanics]. Moscow: Nauka, 1970. 823 p.
13. Nigmatulin R.I. Osnovy mekhaniki mnogofaznykh smesei [Fundamentals of mechanics of multiphase mixtures]. Moscow: Nauka, 1987. Part 2. 464 p.
14. Pozharskii Yu.M. Razrabotka i matematicheskoe modelirovanie tsentrobezhnogo diskovogo separatora na postoyannykh magnitakh. Avtopef. diss. kand. tekhn. nauk. [Development and mathematical modeling of a centrifugal disk separator on permanent magnets. Abstract of Ph.D. (Technical) thesis]. Vladikavkaz, 2002. 17 p.
15. Romankov P.G., Plyushkin S.A. Zhidkostnye separatory [Liquid separators]. Leningrad: Mashinostroenie, 1976. 328 p.
16. Semenov E.V. K obosnovaniyu asimptoticheskogo resheniya dlya laminarnogo techeniya zhidkosti mezhdu dvumya vrashchayushchimisya diskami [To substantiate an asymptotic solution for laminar fluid flow between two rotating disks]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied mechanics and technical physics], 1997, vol. 38, no. 3, pp. 55–63.
17. Semenov E.V., Slavyanskii A.A., Karamzin V.A. Kolichestvennoe modelirovanie protsessa razdeleniya suspenzii v rotore fil’truyushchei tsentrifugi periodicheskogo deistviya [Quantitative modeling of the suspension separation process in the rotor of a batch filter centrifuge]. Khimicheskoe i neftegazovoe mashinostroenie[Chemical and oil and gas engineering], 2014, no. 11, pp. 7–10.
18. Semenov E.V., Slavyanskii A.A., Karamzin A.V. K raschetu gidrodinamicheskikh kharakteristik tarel’chatogo separatora [To calculate the hydrodynamic characteristics of the plates separator]. Khranenie i pererabotka sel’khozsyr’ya[Storage and processing of agricultural raw materials], 2017, no. 6, pp. 39–45.
19. Khappel’ D., Brenner G. Gidrodinamika pri malykh chislakh Reinol’das [Hydrodynamics at small Reynolds numbers]. Moscow: Mir, 1976. 630 p.
20. Shkoropad D.E. Tsentrifugi dlya khimicheskikh proizvodstv [Centrifuges for chemical production]. Moscow: Mashinostroenie, 1975, 248 p.
21. Debuchy R., Dument A., Muhe N., Micheau P. Radial Inflow Between a Rotating and Stationary Disc. European Journal of Mechanics - B.F.uids. 1998, vol. 17, issue 6, pp. 791–810. https://doi.org/10.1016/S0997–7546(99)80014–4
22. Kreith F. Reverse Transition in Radial Source Flow Between Two Parallel Planes. The Physics of Fluids, 1965, vol. 8, issue 6, pp. 1189–1190. https://doi.org/10.1063/1.1761374
23. Peube J.-L., Kreith F. L’ecoulement Permanent D’un Fluidevisqueux Incompressible Entre Deuxdisquesparallelesen Rotation [The Permanent Flow of an Incompressible Viscous Fluid Between Two Rotating Parallel Discs]. Journal de Mécanique [Mechanics Journal], 1966, vol. 5, pp. 261–286.
Review
For citations:
Slavyanskiy A., Semenov E., Gribkova V., Nikolaeva N. About the Fluid Flow in the Centrifugal Separator. Storage and Processing of Farm Products. 2020;(4):166-176. (In Russ.) https://doi.org/10.36107/spfp.2020.231