The Influence of the Sprouting Process of Grain Crops on their Nutritional Value
https://doi.org/10.36107/spfp.2021.207
Abstract
The sprouting process leads to the activation and synthesis of hydrolytic enzymes that make nutrients available for plant growth and development. Consumption of sprouted grains is considered beneficial for human health. The positive consumer perception of sprouted grains of grain crops is stimulating the development of new food products. However, because of the lack of a basic definition of «sprouted grain», it is not clear when grain should be called sprouted. In addition, there are currently no quality criteria for sprouted grains. Accordingly, there is no regulatory framework for the development of appropriate labeling of food products containing sprouted grains. The review examines the nutritional value of sprouted grains of grain crops depending on the conditions of sprouting and provides recommendations for the optimization of sprouting methods to maximize the nutritional value. Relatively long sprouting time (at least 2 days) at sufficiently high temperatures (20 to 35 °C) are necessary for the synthesis of bioactive plant compounds Changes in nutritional value as a result of sprouting are often related to health benefits. However, there are very few confirmatory clinical research, and no conclusions about the health benefits of sprouted grains can be reached at this time. Furthermore, sprouted grains are not a traditional raw material in the food industry and therefore it is difficult to use sprouted grains as a recipe ingredient in food production without losing their nutrients. This review provides a basis for a more precise definition of the «sprouting» process, and allows us to determine directions for further research and development in this area.
About the Authors
Maria L. ZenkovaBelarus
Alexander V. Akulich
Belarus
References
1. Agu, R. C. & Palmer, G. H. (1997). The effect of temperature on the modification of sorghum and barley during malting. Process Biochemistry, 32(6), 501–507. Doi:10.1016/s0032-9592(97)00002-2
2. Ahmad, M., Gani, A., Shah, A., Gani, A. & Masoodi, F. A. (2016). Germination and microwave processing of barley (Hordeum vulgare L) changes the structural and physicochemical properties of β- d -glucan end enhances its antioxidant potential. Carbohydrate Polymers, 153, 696–702. Doi:10.1016/j.carbpol.2016.07.022
3. Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K. & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119(2), 770–778. Doi:10.1016/j.foodchem.2009.07.032
4. Åman, P., Graham, H. & Tilly, A.-C. (1989). Content and solubility of mixed-linked (1→3), (1→4)-β-d-glucan in barley and oats during kernel development and storage. Journal of Cereal Science, 10(1), 45–50. Doi:10.1016/s0733-5210(89)80033-5
5. Aparicio-García, N., Martínez-Villaluenga, C., Frias, J. & Peñas, E. (2021). Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chemistry, (338), 127972. Doi:10.1016/j.foodchem.2020.127972
6. Archana, Sehgal, S. & Kawatra, A. (2001). In vitro protein and starch digestibility of pearl millet (Pennisetum gluacum L.) as affected by processing techniques. Nahrung/Food, 45(1), 25–27. Doi:10.1002/1521-3803(20010101)45:1<25::aid-food25>3.0.co;2-w
7. Autio, K., Simoinen, T., Suortti, T., Salmenkallio-Marttila, M., Lassila, K. & Wilhelmson, A. (2001). Structural and Enzymic Changes in Germinated Barley and Rye. Journal of the Institute of Brewing, 107(1), 19–25. Doi:10.1002/j.2050-0416.2001.tb00075.x
8. Azeke, M. A., Egielewa, S. J., Eigbogbo, M. U. & Ihimire, I. G. (2011). Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Journal of Food Science and Technology, 48(6), 724–729. Doi:10.1007/s13197-010-0186-y
9. Badau, M. H., Nkama, I. & Jideani, I. A. (2005). Phytic acid content and hydrochloric acid extractability of minerals in pearl millet as affected by germination time and cultivar. Food Chemistry, 92(3), 425–435. Doi:10.1016/j.foodchem.2004.08.006
10. Bamforth, C. W. & Kanauchi, M. (2001). A Simple Model for the Cell Wall of the Starchy Endosperm in Barley. Journal of the Institute of Brewing, 107(4), 235–240. Doi:10.1002/j.2050-0416.2001.tb00095.x
11. Bamforth, C. W. & Martin, H. L. (1983). The degradation of β-glucan during malting and mashing: the role of β-glucanase. Journal of the Institute of Brewing, 89(4), 303–307. Doi:10.1002/j.2050-0416.1983.tb04190.x
12. Bartnik, M. & Szafrańska, I. (1987). Changes in phytate content and phytase activity during the germination of some cereals. Journal of Cereal Science, 5(1), 23–28. Doi:10.1016/s0733-5210(87)80005-x
13. Bast, A. & Haenen, G. R. M. M. (2013). Ten misconceptions about antioxidants. Trends in Pharmacological Sciences, 34(8), 430–436. Doi:10.1016/j.tips.2013.05.010
14. Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F. & Galieni, A. (2019). Sprouted Grains: A Comprehensive Review. Nutrients, (11), 421. Doi:10.3390/nu11020421
15. Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V. & Pfeiffer, W. H. (2011). Biofortification: A New Tool to Reduce Micronutrient Malnutrition. Food and Nutrition Bulletin, 32 no 1 (supplement), 31-40. Doi:10.1177/15648265110321s105
16. Burton, R. A., & Fincher, G. B. (2014). Evolution and development of cell walls in cereal grains. Frontiers in Plant Science, 5. Doi:10.3389/fpls.2014.00456
17. Buttimer, E. T., & Briggs, D. E. (2000). Mechanisms of the Release of Bound β-Amylase. Journal of the Institute of Brewing, 106(2), 83–94. Doi:10.1002/j.2050-0416.2000.tb00043.x
18. Code of Federal Regulations. Title 21 - Sec.184.1445: Malt syrup (malt extract): https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1445
19. Corder, A. M. & Henry, R. J. (1989). Carbohydrate-degrading enzymes ingerminating wheat. Cereal Chemistry, 66, 435–439.
20. Chung, T. Y., Nwokolo, E. N. & Sim, J. S. (1989). Compositional and digestibility changes in sprouted barley and canola seeds. Plant Foods for Human Nutrition, 39(3), 267–278. Doi:10.1007/bf01091937
21. De Backer, E., Gebruers, K., Van den Ende, W., Courtin, C. M. & Delcour, J. A. (2010). Post-translational processing of β-d-xylanases and changes in extractability of arabinoxylans during wheat germination. Plant Physiology and Biochemistry, 48(2-3), 90–97. Doi:10.1016/j.plaphy.2009.10.008
22. Donkor, O. N., Stojanovska, L., Ginn, P., Ashton, J. & Vasiljevic, T. (2012). Germinated grains – Sources of bioactive compounds. Food Chemistry, 135(3), 950–959. Doi:10.1016/j.foodchem.2012.05.058
23. Duke, S. H., Vinje, M. A. & Henson, C. A. (2013). Tracking Amylolytic Enzyme Activities During Congress Mashing with North American Barley Cultivars: Comparisons of Patterns of Activity and beta-Amylases with Differing Bmy1 Intron III Alleles and Correlations of Amylolytic Enzyme Activities. Cerevisia, 38(2), 51–52. Doi:10.1016/j.cervis.2013.09.003
24. Centeno, C., Viveros, A., Brenes, A., Canales, R., Lozano, A. & De la Cuadra, C. (2001). Effect of Several Germination Conditions on Total P, Phytate P, Phytase, and Acid Phosphatase Activities and Inositol Phosphate Esters in Rye and Barley. Journal of Agricultural and Food Chemistry, 49(7), 3208–3215. Doi:10.1021/jf010023c
25. Chung, H.-J., Jang, S.-H., Cho, H. Y. & Lim, S.-T. (2009). Effects of steeping and anaerobic treatment on GABA (γ-aminobutyric acid) content in germinated waxy hull-less barley. LWT - Food Science and Technology, 42(10), 1712–1716. Doi:10.1016/j.lwt.2009.04.007
26. EFSA (2015). Scientific Opinion on Dietary Reference Values for vitamin E as α-tocopherol. EFSA Journal, 13(7), 4149-4220. Doi:10.2903/j.efsa.2015.4149
27. Ellis, R. P., Swanston, J. S., Rubio, A., Perez-Vendrell, A. M., Romagosa, I. & Molina-Cano, J. L. (1997). The Development of β-Glucanase and Degradation of β-Glucan in Barley Grown in Scotland and Spain. Journal of Cereal Science, 26(1), 75–82. Doi:10.1006/jcrs.1996.0105
28. Faltermaier, A., Zarnkow, M., Becker, T., Gastl, M. & Arendt, E. K. (2015). Common wheat (Triticum aestivum L.): evaluating microstructural changes during the malting process by using confocal laser scanning microscopy and scanning electron microscopy. European Food Research and Technology, 241(2), 239–252. Doi:10.1007/s00217-015-2450-x
29. Fardet, A., Rock, E. & Rémésy, C. (2008). Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? Journal of Cereal Science, 48(2), 258–276. Doi:10.1016/j.jcs.2008.01.002
30. Feng, H., Nemzer, B. & Devries, J. (Eds.) Sprouted grains: nutritional value, production, and applications. Woodhead Publishing and AACC International Press; 2018. Doi:10.1016/C2016-0-01536-X
31. Fredlund, K., Bergman, E.-L., Rossander-Hulthén, L., Isaksson, M., Almgren, A. & Sandberg, A.-S. (2003). Hydrothermal treatment and malting of barley improved zinc absorption but not calcium absorption in humans. European Journal of Clinical Nutrition, 57(12), 1507–1513. Doi:10.1038/sj.ejcn.1601718
32. Gujska, E. & Kuncewicz, A. (2005). Determination of folate in some cereals and commercial cereal-grain products consumed in Poland using trienzyme extraction and high-performance liquid chromatography methods. European Food Research and Technology, 221(1-2), 208–213. Doi:10.1007/s00217-004-1122-z
33. Ha, K.-S., Jo, S.-H., Mannam, V., Kwon, Y.-I. & Apostolidis, E. (2016). Stimulation of Phenolics, Antioxidant and α-Glucosidase Inhibitory Activities During Barley (Hordeum vulgare L.) Seed Germination. Plant Foods for Human Nutrition, 71(2), 211–217. Doi:10.1007/s11130-016-0549-2
34. Haraldsson, A.-K., Rimsten, L., Alminger, M. L., Andersson, R., Andlid, T., Åman, P., & Sandberg, A.-S. (2004). Phytate content is reduced and β-glucanase activity suppressed in malted barley steeped with lactic acid at high temperature. Journal of the Science of Food and Agriculture, 84(7), 653–662. Doi:10.1002/jsfa.1724
35. Hefni, M. & Witthöft, C. M. (2012). Effect of germination and subsequent oven-drying on folate content in different wheat and rye cultivars. Journal of Cereal Science, 56(2), 374–378. Doi:10.1016/j.jcs.2012.03.009
36. Hemalatha, S., Platel, K. & Srinivasan, K. (2007). Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains. European Journal of Clinical Nutrition, 61(3), 342–348. Doi:10.1038/sj.ejcn.1602524
37. Henry, R. J. (1987). Pentosan and (1 → 3),(1 → 4)-β-Glucan concentrations in endosperm and wholegrain of wheat, barley, oats and rye. Journal of Cereal Science, 6(3), 253–258. Doi:10.1016/s0733-5210(87)80062-0
38. Hrmova, M., Banik, M., Harvey, A. J., Garrett, T. P., Varghese, J. N., Høj, P. B. & Fincher, G. B. (1997). Polysaccharide hydrolases in germinated barley and their role in the depolymerization of plant and fungal cell walls. International Journal of Biological Macromolecules, 21(1-2), 67–72. Doi:10.1016/s0141-8130(97)00043-3
39. Hucker, B., Wakeling, L. & Vriesekoop, F. (2012). Investigations into the thiamine and riboflavin content of malt and the effects of malting and roasting on their final content. Journal of Cereal Science, 56(2), 300–306. Doi:10.1016/j.jcs.2012.03.008
40. Hung, P.V., Maeda, T., Yamamoto, S. & Morita, N. (2011). Effects of germination on nutritional composition of waxy wheat. Journal of the Science of Food and Agriculture. (92), 667-672. Doi.org/10.1002/jsfa.4628
41. Hübner, F., O’Neil, T., Cashman, K. D. & Arendt, E. K. (2010). The influence of germination conditions on beta-glucan, dietary fibre and phytate during the germination of oats and barley. European Food Research and Technology, 231(1), 27–35. Doi:10.1007/s00217-010-1247-1
42. Inyang, C.U. & Zakari U.M. (2008). Effect of Germination and Fermentation of Pearl Millet on Proximate, Chemical and Sensory Properties of Instant «Fura» - A Nigerian Cereal Food. Pakistan Journal of Nutrition, 7(1), 9-12. Doi:10.3923/pjn.2008.9.12
43. Iqbal, T. H., Lewis, K. O. & Cooper, B. T. (1994). Phytase activity in the human and rat small intestine. Gut, 35(9), 1233–1236. Doi:10.1136/gut.35.9.1233
44. Jabrin, S., Ravanel, S., Gambonnet, B., Douce, R. & Rébeillé, F. (2003). One-Carbon Metabolism in Plants. Regulation of Tetrahydrofolate Synthesis during Germination and Seedling Development. Plant physiology, 131(3), 1431–1439. Doi:10.1104/pp.016915
45. Jägerstad, M., Piironen, V., Walker, C., Ros, G., Carnovale, E., Holasova, M. & Nau, H. (2005). Increasing natural food folates through bioprocessing and biotechnology. Trends in Food Science & Technology, 16(6-7), 298–306. Doi:10.1016/j.tifs.2005.03.005
46. Kariluoto, S., Liukkonen, K.-H., Myllymäki, O., Vahteristo, L., Kaukovirta-Norja, A. & Piironen, V. (2006). Effect of Germination and Thermal Treatments on Folates in Rye. Journal of Agricultural and Food Chemistry, 54(25), 9522–9528. Doi:10.1021/jf061734j
47. Katina, K., Liukkonen, K.-H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S.-M., Lampi, A.-M., … Poutanen, K. (2007a). Fermentation-induced changes in the nutritional value of native or germinated rye. Journal of Cereal Science, 46(3), 348–355. Doi:10.1016/j.jcs.2007.07.006
48. Katina, K., Laitila, A., Juvonen, R., Liukkonen, K.-H., Kariluoto, S., Piironen, V., … Poutanen, K. (2007b). Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiology, 24(2), 175–186. Doi:10.1016/j.fm.2006.07.012
49. Kim, H. Y., Lee, S. H., Hwang, I. G., Woo, K. S., Kim, K. J., Lee, M. J., … Jeong, H. S. (2013). Antioxidant and antiproliferation activities of winter cereal crops before and after germination. Food Science and Biotechnology, 22(1), 181–186. Doi:10.1007/s10068-013-0025-9
50. Klose, C. & Arendt, E. K. (2012). Proteins in Oats; their Synthesis and Changes during Germination: A Review. Critical Reviews in Food Science and Nutrition, 52(7), 629–639. Doi:10.1080/10408398.2010.504902
51. Klose, C., Schehl, B. D. & Arendt, E. K. (2009). Fundamental study on protein changes taking place during malting of oats. Journal of Cereal Science, 49(1), 83–91. Doi:10.1016/j.jcs.2008.07.014
52. Koehler, P., Hartmann, G., Wieser, H. & Rychlik, M. (2007). Changes of Folates, Dietary Fiber, and Proteins in Wheat As Affected by Germination. Journal of Agricultural and Food Chemistry, 55(12), 4678–4683. Doi:10.1021/jf0633037
53. Konietzny, U. & Greiner, R. (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). International Journal of Food Science and Technology, 37(7), 791–812. Doi:10.1046/j.1365-2621.2002.00617.x
54. Krahl, M., Zarnkow, M., Back, W. & Becker, T. (2010). Determination of the Influence of Malting Parameters on the Water-Extractable Arabinoxylan Content of Wheat (Triticum Aestivum), Rye (Secale cereale), and Spelt Wheat (Triticum aestivum spp. spelta). Journal of the American Society of Brewing Chemists, 68(1), 34–40. Doi:10.1094/asbcj-2009-1126-01
55. Kubicka, E. Grabska, J., Jędrychowski, L. & Czyż, B. (2000). Changes of specific activity of lipase and lipoxygenase during germination of wheat and barley. International Journal of Food Sciences and Nutrition, (51), 301-304. Doi:10.1080/09637480050077194
56. Lampi, A.-M., Nurmi, T. & Piironen, V. (2010). Effects of the Environment and Genotype on Tocopherols and Tocotrienols in Wheat in the healthgrain Diversity Screen. Journal of Agricultural and Food Chemistry, 58(17), 9306–9313. Doi:10.1021/jf100253u
57. Larsson, M. & Sandberg, A.-S. (1992). Phytate Reduction in Oats during Malting. Journal of Food Science, 57(4), 994–997. Doi:10.1111/j.1365-2621.1992.tb14340.x
58. Lebiedzińska, A. & Szefer, P. (2006). Vitamins B in grain and cereal–grain food, soy-products and seeds. Food Chemistry, 95(1), 116–122. Doi:10.1016/j.foodchem.2004.12.024
59. Lemmens, E., De Brier, N., Spiers, K. M., Ryan, C., Garrevoet, J., Falkenberg, G., et al. (2018). The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chemistry, 264, 367–376. Doi:10.1016/j.foodchem.2018.04.125
60. Lemmens, E, Moroni, A. V., Pagand, J., Heirbaut, P., Ritala, A., Karlen, Y., et al. (2019). Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Comprehensive Reviewsin Food Science and Food Safety, (18), 305-328. Doi:10.1111/1541-4337.12414
61. Lestienne, I., Icard-Vernière, C., Mouquet, C., Picq, C. & Trèche, S. (2005). Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chemistry, 89(3), 421–425. Doi:10.1016/j.foodchem.2004.03.040
62. Li, Y., Lu, J., Gu, G., Shi, Z. & Mao, Z. (2005). Studies on water-extractable arabinoxylans during malting and brewing. Food Chemistry, 93(1), 33–38. Doi:10.1016/j.foodchem.2004.08.040
63. Lintschinger, J., Fuchs, N., Moser, H., Jäger, R., Hlebeina, T., Markolin, G. & Gössler, W. (1997). Uptake of various trace elements during germination of wheat, buckwheat and quinoa. Plant Foods for Human Nutrition, 50(3), 223–237. Doi:10.1007/bf02436059
64. Liukkonen, K.-H., Katina, K., Wilhelmsson, A., Myllymaki, O., Lampi, A.-M., Kariluoto, S., et al. (2003). Process-induced changes on bioactive compounds in whole grain rye. Proceedings of the Nutrition Society, 62(01), 117–122. Doi:10.1079/pns2002218
65. Lu, J., Zhao, H., Chen, J., Fan, W., Dong, J., Kong, W., et al. (2007). Evolution of Phenolic Compounds and Antioxidant Activity during Malting. Journal of Agricultural and Food Chemistry, 55(26), 10994–11001. Doi:10.1021/jf0722710
66. Luo, Y.-W., Xie, W.-H., Jin, X.-X., Wang, Q. & He, Y.-J. (2013). Effects of germination on iron, zinc, calcium, manganese, and copper availability from cereals and legumes. CyTA - Journal of Food, 12(1), 22–26. Doi:10.1080/19476337.2013.782071
67. Mäkinen, O. E. & Arendt, E. K. (2012). Oat malt as a baking ingredient – A comparative study of the impact of oat, barley and wheat malts on bread and dough properties. Journal of Cereal Science, 56(3), 747–753. Doi:10.1016/j.jcs.2012.08.009
68. Mäkinen, O. E., Zannini, E. & Arendt, E. K. (2013). Germination of Oat and Quinoa and Evaluation of the Malts as Gluten Free Baking Ingredients. Plant Foods for Human Nutrition, 68(1), 90–95. Doi:10.1007/s11130-013-0335-3
69. Mandeep S. Sibian, Dharmesh C. Saxena & Charanjit S. Riar (2016). Nutritional and functional quality analysis and amino acid score evaluation of germinated wheat (Triticum aestivum) grain. International Journal of Food Science and Nutrition, 1(4), 16-22.
70. Malleshi, N. G. & Klopfenstein, C. F. (1998). Nutrient composition, amino acid and vitamin contents of malted sorghum, pearl millet, finger millet and their rootlets. International Journal of Food Sciences and Nutrition, 49(6), 415–422. Doi:10.3109/09637489809086420
71. Mardar, M., Zhygunov, D. & Znachek, R. (2016). QFD methodology to develop a new health-conducive grain product. Eastern-European Journal of Enterprise Technologies, 2/11, 42-48. Doi:10.15587/1729-4061.2016.65725
72. Marconi, O., Tomasi, I., Dionisio, L., Perretti, G. & Fantozzi, P. (2014). Effects of malting on molecular weight distribution and content of water-extractable β-glucans in barley. Food Research International, 64, 677–682. Doi:10.1016/j.foodres.2014.07.035
73. Martínez-Villaluenga, С. & Peñas Pozo, E. (2020). Production,Properties and Applications of Sprouted Seeds. ISBN 978-3-03943-317-9 (PDF). https://Doi.org/10.3390/books978-3-03943-317-9
74. Mbithi-Mwikya, S., Van Camp, J., Yiru, Y. & Huyghebaert, A. (2000). Nutrient and Antinutrient Changes in Finger Millet (Eleusine coracan) During Sprouting. LWT - Food Science and Technology, 33(1), 9–14. Doi:10.1006/fstl.1999.0605
75. Mridula, D., Sharma, M. & Gupta, R. K. (2015). Development of quick cooking multi-grain dalia utilizing sprouted grains. Journal of Food Science and Technology, (52), 5826-5833. Doi:10.1007/s13197-014-1634-x
76. Noda, T., Takigawa, S., Matsuuraendo, C., Saito, K., Takata, K., Tabiki, T., … Yamauchi H. (2004). The physicochemical properties of partially digested starch from sprouted wheat grain. Carbohydrate Polymers, 56(3), 271–277. Doi:10.1016/j.carbpol.2003.10.015
77. Ohm, J.-B., Lee, C. W., & Cho, K. (2016). Germinated Wheat: Phytochemical Composition and Mixing Characteristics. Cereal Chemistry Journal, 93(6), 612–617. Doi:10.1094/cchem-01-16-0006-r
78. Osman, A. M., Coverdale, S. M., Cole, N., Hamilton, S. E., Jersey, J. & Inkerman, P. A. (2002). Characterisation and Assessment of the Role of Barley Malt Endoproteases During Malting and Mashing. Journal of the Institute of Brewing, 108(1), 62–67. Doi:10.1002/j.2050-0416.2002.tb00125.x
79. Ozturk, L., Yazici, M. A., Yucel, C., Torun, A., Cekic, C., Bagci, A., … Cakmak, I. (2006). Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum, 128(1), 144–152. Doi:10.1111/j.1399-3054.2006.00737.x
80. Perera, A., Meda, V. & Tyler, R. T. (2010). Resistant starch: A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Research International, 43(8), 1959–1974. Doi:10.1016/j.foodres.2010.06.003
81. Persson, H., Türk, M., Nyman, M. & Sandberg, A.-S. (1998). Binding of Cu2+, Zn2+, and Cd2+ to Inositol Tri-, Tetra-, Penta-, and Hexaphosphates. Journal of Agricultural and Food Chemistry, 46(8), 3194–3200. Doi:10.1021/jf971055w
82. Peterson, D. M. (1999). Lipase Activity and Lipid Metabolism During Oat Malting. Cereal Chemistry Journal, 76(1), 159–163. Doi:10.1094/cchem.1999.76.1.159
83. Peterson, D. M. (1998). Malting Oats: Effects on Chemical Composition of Hull-less and Hulled Genotypes. Cereal Chemistry Journal, 75(2), 230–234. Doi:10.1094/cchem.1998.75.2.230
84. Platel, K., Eipeson, S. W. & Srinivasan, K. (2010). Bioaccessible Mineral Content of Malted Finger Millet (Eleusine coracana), Wheat (Triticum aestivum), and Barley (Hordeum vulgare). Journal of Agricultural and Food Chemistry, 58(13), 8100–8103. Doi:10.1021/jf100846e
85. Plaza, L., de Ancos, B. & Cano, P. M. (2003). Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum.L) and alfalfa (Medicago sativa) treated by a new drying method. European Food Research and Technology, 216(2), 138–144. Doi:10.1007/s00217-002-0640-9
86. Pompella, A., Sies, H., Wacker, R., Brouns, F., Grune, T., Biesalski, H. K. & Frank, J. (2014). The use of total antioxidant capacity as surrogate marker for food quality and its effect on health is to be discouraged. Nutrition, 30(7-8), 791–793. Doi:10.1016/j.nut.2013.12.002
87. Poutanen, К., Flander, L. & Katina, K. (2009). Sourdough and cereal fermentation in a nutritional perspective. Food Microbiology, (26), 693-699. Doi:10.1016/j.fm.2009.07.011
88. Quek, W. P., Yu, W., Tao, K., Fox, G. P. & Gilbert, R. G. (2019). Starch structure-property relations as a function of barley germination times. International Journal of Biological Macromolecules, (136), 1125-1132. Doi:10.1016/j.ijbiomac.2019.06.149
89. Rimsten, L., Haraldsson, A.-K., Andersson, R., Alminger, M., Sandberg, A.-S. & Åman, P. (2002). Effects of malting on β-glucanase and phytase activity in barley grain. Journal of the Science of Food and Agriculture, 82(8), 904–912. Doi:10.1002/jsfa.1135
90. Rudi, H., Uhlen, A. K., Harstad, O. M., & Munck, L. (2006). Genetic variability in cereal carbohydrate compositions and potentials for improving nutritional value. Animal Feed Science and Technology, 130(1-2), 55–65. Doi:10.1016/j.anifeedsci.2006.01.017
91. Schlemmer, U., Frølich, W., Prieto, R. M. & Grases, F. (2009). Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research, (53), 330-375. Doi:10.1002/mnfr.200900099
92. Schwalb, T., Wieser, H. & Koehler, P. (2012). Studies on the gluten-specific peptidase activity of germinated grains from different cereal species and cultivars. European Food Research and Technology, 235(6), 1161–1170. Doi:10.1007/s00217-012-1853-1
93. Sibian, M. S., Saxena, D. C., & Riar, C. S. (2017). Effect of germination on chemical, functional and nutritional characteristics of wheat, brown rice and triticale: a comparative study. Journal of the Science of Food and Agriculture, 97(13), 4643–4651. Doi:10.1002/jsfa.8336
94. Simahina, G., Bazhay-Zhezherun, S., Mykoliv, T., Bereza-Kindzerska, L.V. & Antonіuk, M.M. (2016). The use of the biologically activated grain is in technology of health products. Wschodnioeuropejskie Czasopismo Naukowe (East European Scientific Journal), 9(4), 147-153.
95. Skoglund, M., Peterson, D. M., Andersson, R., Nilsson, J. & Dimberg, L. H. (2008). Avenanthramide content and related enzyme activities in oats as affected by steeping and germination. Journal of Cereal Science, 48(2), 294–303. Doi:10.1016/j.jcs.2007.09.010
96. Sung, H. G., Shin, H. T., Ha, J. K., Lai, H.-L., Cheng, K.-J. & Lee, J. H. (2005). Effect of germination temperature on characteristics of phytase production from barley. Bioresource Technology, 96(11), 1297–1303. Doi:10.1016/j.biortech.2004.10.010
97. Sungurtas, J., Swanston, J. ., Davies, H. & McDougall, G. (2004). Xylan-degrading enzymes and arabinoxylan solubilisation in barley cultivars of differing malting quality. Journal of Cereal Science, 39(2), 273–281. Doi:10.1016/j.jcs.2003.11.001
98. Świeca, M. & Dziki, D. (2015). Improvement in sprouted wheat flour functionality: effect of time, temperature and elicitation. International Journal of Food Science & Technology, 50(9), 2135–2142. Doi:10.1111/ijfs.12881
99. Teixeira, C., Nyman, M., Andersson, R. & Alminger, M. (2016). Effects of variety and steeping conditions on some barley components associated with colonic health. Journal of the Science of Food and Agriculture, 96(14), 4821–4827. Doi:10.1002/jsfa.7923
100. Tian, B., Xie, B., Shi, J., Wu, J., Cai, Y., Xu, T., … Deng, Q. (2010). Physicochemical changes of oat seeds during germination. Food Chemistry, 119(3), 1195–1200. Doi:10.1016/j.foodchem.2009.08.035
101. Wang, J., Zhang, G., Chen, J., & Wu, F. (2004). The changes of β-glucan content and β-glucanase activity in barley before and after malting and their relationships to malt qualities. Food Chemistry, 86(2), 223–228. Doi:10.1016/j.foodchem.2003.08.020
102. Wilhelmson, A., Oksman-Caldentey, K.-M., Laitila, A., Suortti, T., Kaukovirta-Norja, A. & Poutanen, K. (2001). Development of a Germination Process for Producing High β-Glucan, Whole Grain Food Ingredients from Oat. Cereal Chemistry Journal, 78(6), 715–720. Doi:10.1094/cchem.2001.78.6.715
103. Woodward, J., Fincher, G. & Stone, B. (1983). Water-soluble (1→3), (1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydrate Polymers, 3(3), 207–225. Doi:10.1016/0144-8617(83)90019-x
104. Xie, L., Jin, Y., Du, J. & Zhang, K. (2014). Water-soluble protein molecular weight distribution and effects on wheat malt quality during malting. Journal of the Institute of Brewing end Distilling, (120), 399-403. Doi:10.1002/jib.182
105. Xu, J. G., Tian, C. R., Hu, Q. P., Luo, J. Y., Wang, X. D. & Tian, X. D. (2009). Dynamic Changes in Phenolic Compounds and Antioxidant Activity in Oats (Avena nudaL.) during Steeping and Germination. Journal of Agricultural and Food Chemistry, 57(21), 10392–10398. Doi:10.1021/jf902778j
106. Yang, T. K., Basu, B. & Ooraikul, F. (2001). Studies on germination conditions and antioxidant contents of wheat grain. International Journal of Food Sciences and Nutrition, 52(4), 319–330. Doi:10.1080/09637480120057567
107. Zenkova, M. L. & Babich, D. A. (2018). Wheat grain preparing for production of conserved food “Second course for lunch”. Food Processing: Techniques and Technology, 48 (2), 46–53. Doi:10.21603/2074-9414-2018-2-46-53
108. Žilić, S., Basić, Z., Hadži-Tašković Šukalović, V., Maksimović, V., Janković, M. & Filipović, M. (2014). Can the sprouting process applied to wheat improve the contents of vitamins and phenolic compounds and antioxidant capacity of the flour? International Journal of Food Science & Technology, 49(4), 1040–1047. Doi:10.1111/ijfs.12397
Review
For citations:
Zenkova M.L., Akulich A.V. The Influence of the Sprouting Process of Grain Crops on their Nutritional Value. Storage and Processing of Farm Products. 2021;(3):26-53. (In Russ.) https://doi.org/10.36107/spfp.2021.207