Amoxicillin and Acidic Acid: Effective Medicines for Animal Health Protection
https://doi.org/10.36107/spfp.2021.259
Abstract
Providing the domestic livestock and poultry farming actively developing in recent years with effective and inexpensive medicines for animals, including for increasing the competitiveness of domestic products in export by increasing the profitability of production and reducing the cost of veterinary and sanitary measures is one of the priority tasks of the Strategy. scientific and technological development of the Russian Federation. One of the key tasks for creating safe and high-quality food is the development, production and rational use of effective and safe means of protecting the health of farm animals. The purpose of our review is to substantiate the development of innovative means of protecting the health of farm animals through the use of low doses of the antibiotic amoxicillin in combination with succinic acid. The prospects for the development of veterinary drugs based on amoxicillin are due to a wide spectrum of bactericidal action against aerobic gram-positive and gram-negative bacteria, good solubility, bioavailability, rapid absorption from the gastrointestinal tract, which is not influenced by food intake, high resistance to gastric juice, which allows you to effectively use it not only in injectable, but also in oral dosage forms. But the susceptibility of bacteria to antibiotics is seriously reduced when bacterial cells form the so-called biofilms - resistant conglomerate colonies surrounded by extracellular polymeric substance. The dense structure of cell colonies in biofilms and the presence of a polymer matrix covering them significantly complicates the contact of antibiotics with bacterial cells. Because of this, the resistance of bacteria to antimicrobial drugs in biofilms is much higher compared to single bacteria. Therefore, infections associated with the formation of biofilm pathogens are much more difficult to treat with antibiotics and often become recurrent. Given the prevalence of such infections, it is advisable to develop an antibacterial drug containing the antibiotic amoxicillin in combination with a component capable of causing the destruction of biofilms. This component is succinic acid. The mechanism of this phenomenon is explained by the fact that succinic acid promotes the destruction of bacterial films and, thus, an increase in the area of contact of antibiotics with bacterial cells.
About the Authors
Aleksandr A. KomarovRussian Federation
Sergey V. Engashev
Russian Federation
Ekaterina S. Engasheva
Russian Federation
Damir I. Udavliev
Russian Federation
Mikhail A. Egorov
Russian Federation
Boris V. Usha
Russian Federation
Renat N. Selimov
Russian Federation
Игорь Гламаздин
Russian Federation
References
1. Ahmadi M., Derakhshandeh A., Shirian S., Daneshbod Y.,Ansari-Lari M., Saeid N. Detection of bacterial biofilm in uterine of repeat breeder dairy cows. Asian Pacific Journal of Reproduction, 2017, 6: 136-139.
2. Antipov A., Babushkin V., Gagloev A., Negreeva A., Zavyalova V. Improving reproductive qualities by using succinic acid in the diet of pregnant sows. Совет научных редакторов, 2021, 1(64): 122-126.
3. Astasov- Frauenhoffer M., Braissant O., Hauser G.I., Weiger R., Walter C., Zitzmann N.U., Waltimo T. Microcalorimetric determination of the effects of amoxicillin, metronidazole, and their combination on in vitro biofilm. Journal of periodontology, 2014, 85(2): 349-357.
4. Bahamondez-Canas, T., Smyth H.D. Influence of excipients on the antimicrobial activity of tobramycin against Pseudomonas aeruginosa biofilms. Pharmaceutical research, 2018, 35(1): 10 (doi.org/10.1007/s11095-017-2301-5).
5. Bedi M. S., Verma V., Chhibber S. Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World Journal of Microbiology and Biotechnology, 2009, 25(7): 1145-1151.
6. Beloeil P. A. Борьба с устойчивостью к антибиотикам с позиций безопасности пищевых продуктов в Европе. ВОЗ, 2011.
7. Bjarnsholt T. The role of bacterial biofilms in chronic infections. Apmis, 2013, 121: 1-58.
8. Boukahil I., Czuprynski C. J. Mannheimia haemolytica biofilm formation on bovine respiratory epithelial cells. Veterinary Microbiology, 2016, 197: 129-136.
9. Brogden R.N., Carmine A., Heel R.C., Morley P.A., Speight T.M., Avery G.S. Amoxicillin-clavulanic acid: a review of its antibacterial activity, pharmacokinetics, and therapeutic use. Drugs, 1981, 22: 337-362
10. Brown A.G., Butterworth D., Cole M., Hanscomb G., Hood J.D., Reading C., Rolinson G.N. Naturally occurring β-lactamase inhibitors with antibacterial activity. Journal of Antibiotics, 1976, 29: 668-669.
11. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284:1318-1322
12. Costerton, J.W. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends in microbiology, 2001, 9(2): 50-52.
13. del Prado G., Ruiz V., Naves P., Rodríguez-Cerrato V., Soriano F., del Carmen Ponte M. Biofilm formation by Streptococcus pneumoniae strains and effects of human serum albumin, ibuprofen, N-acetyl-l-cysteine, amoxicillin, erythromycin, and levofloxacin. Diagnostic microbiology and infectious disease, 2010, 67(4): 311-318.
14. Giguere S., Prescott J.F., Dowling P.M. Antimicrobial therapy in veterinary medicine. 5th ed. Wiley Blackwell. John Wiley & Sons, 2013.
15. Góchez D., Moulim G., Jeannin M., Erlacher-Vindel E. OIE Annual Report on Antimicrobial Agents Intended for Use in Animals. Better understanding of the global situation. Fourth report, 2020.
16. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. International journal of antimicrobial agents, 2010, 35(4): 322-332.
17. Kumar R., Chandar B., Parani M. Use of succinic & oxalic acid in reducing the dosage of colistin against New Delhi metallo-β-lactamase-1 bacteria. The Indian journal of medical research, 2018, 147(1): 97-101. (Doi:10.4103/ijmr.IJMR_1407_16).
18. Larsen T. Susceptibility of Porphyromonas gingivalis in biofilms to amoxicillin, doxycycline and metronidazole. Oral microbiology and immunology, 2002, 17 (5): 267-271.
19. Li H., Peng, B, Peng, X. Application of succinic acid in improving sensitivity of bacteria on antibiotic. WO2019178954. Publication Date 26.09.2019
20. MacDougall, C. Antimicrobial stewardship programs in health care systems / C.MacDougall, R.E. Polk // Clinical Microbiology Reviews – 2008. – Vol. 18, № 4. – P. 638-56.
21. Melchior M.B., Van Osch M.H.J., Graat R.M., Van Duijkeren E., Mevius D. J., Nielen M., Gaastra W., Fink-Gremmels J. Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in Agr-type II strains. Veterinary microbiology, 2009, 137(1-2): 83-89.
22. Mlynek K.D., Callahan M.T., Shimkevitch A.V., Farmer, J.T., Endres J.L., Marchand M., Bayles K.W., Hoswill A.R., Kaplan, J. B. Effects of low-dose amoxicillin on Staphylococcus aureus USA300 biofilms. Antimicrobial agents and chemotherapy, 2016, 60(5): 2639-2651.
23. Moraes D., Brandao L., Pitchenin L., Filho J., Mores N., Nakazato L., Dutra V. Occurrence of tad genes associated with biofilm formation in isolates of Pasteurella multocida from lungs of pigs with pneumonia. Pesquisa Veterinária Brasileira, 2014, 34: 1147-1152.
24. Morgan, R., Kohn, S., Hwang, S.-H., Hassett, D. J., Sauer, K. BdlA, a Chemotaxis Regulator Essential for Biofilm Dispersion in Pseudomonas aeruginosa. Journal of Bacteriology, 2006, 188(21): 7335–7343.
25. Oliveira M., Nunes S.F., Carneiro C., Bexiga R., Bernardo F., Vilela C.L. Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Veterinary microbiology, 2007, 124(1-2): 187-191.
26. Pace J. L., Rupp M. E., Finch, R. G. Biofilms, infection, and antimicrobial therapy. Boca Raton,Taylor & Francis Group, 2006.
27. Peeters E., Nelis H.J., Coenye T. Evaluation of the efficacy of disinfection procedures against Burkholderia cenocepacia biofilms. Journal of Hospital Infection, 2008, 70(4): 361-368.
28. Percival S., Knottenbelt D, Cochrane C. Biofilms and Veterinary Medicine, Springer, 2011.
29. Poole K. Resistance to beta-lactam antibiotics. Cell Mol Life Sci 2004; 61:2200–23
30. Rolinson G.N. 6-APA and the development of the β-lactam antibiotics. Journal of Antimicrobial Chemotherapy, 1979, 5: 7–14.
31. Rolinson GN. 6-APA and development of the β-lactam antibiotis. J Antimicrob Chemother 1979;5:7–14.
32. Ross R.F. Pasteurella multocida and its role in porcine pneumonia. Anim. Health Res, 2006, 7:13-29.
33. Ross S.S., Fiegel J. Nutrient dispersion enhances conventional antibiotic activity against Pseudomonas aeruginosa biofilms. International Journal of Antimicrobial Agents, 2012, 40(2): 177-181.
34. Rossi E., Cimdins A., Luthje P., Brauner A., Sjoling A., Landini P., Romling, U. It’s a gut feeling – Escherichia colibiofilm formation in the gastrointestinal tract environment. Critical Reviews in Microbiology, 2017, 44(1): 1-30.
35. Rumbaugh, K., Sauer, K. Biofilm dispersion. Nature reviews. Microbiology, 2020, 18(10): 571–586;
36. Sauer K., Cullen M. C., Rickard A. H., Zeef, L. A., Davies, D. G., Gilbert, P. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. Journal of bacteriology, 2004, 186(21): 7312–7326.
37. Sedlacek M.J., Walker C. Antibiotic resistance in an in vitro subgingival biofilm model. Oral microbiology and immunology, 2007, 22(5): 333-339.
38. Silva E., Monteiro R., Grainha T., Alves D., Pereira M.O., Sousa A.M. Fostering innovation in the treatment of chronic polymicrobial cystic fibrosis-associated infections exploring aspartic acid and succinic acid as ciprofloxacin adjuvants. Frontiers in cellular and infection microbiology, 2020, 10: 441 (doi: 10.3389/fcimb. 2020.00441)
39. Soares G.M., Teles F., Starr J.R., Feres M., Patel M., Martin L., Teles R. Effects of azithromycin, metronidazole, amoxicillin, and metronidazole plus amoxicillin on an in vitro polymicrobial subgingival biofilm model. Antimicrobial agents and chemotherapy, 2015, 59(5): 2791-2798.
40. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358(9276): 135-138
41. Waack U., Nicholson T.L. Subinhibitory concentrations of amoxicillin, lincomycin, and oxytetracycline commonly used to treat swine increase Streptococcus suis biofilm formation . Frontiers in microbiology, 2018, 9: 2707.
42. Wolcott R.D., Ehrlich G.D. Biofilms and Chronic Infections. JAMA, 2008, 299 (22): 2682-2684.
43. Wolcott R.D., Ehrlich G.D. Biofilms and Chronic Infections. JAMA, 2008, 299 (22): 2682-2684
44. Yonezawa H., Osaki T., Hojo F., Kamiya S. Effect of Helicobacter pylori biofilm formation on susceptibility to amoxicillin, metronidazole and clarithromycin. Microbial pathogenesis, 2019, 132: 100-108
Review
For citations:
Komarov A.A., Engashev S.V., Engasheva E.S., Udavliev D.I., Egorov M.A., Usha B.V., Selimov R.N., Amoxicillin and Acidic Acid: Effective Medicines for Animal Health Protection. Storage and Processing of Farm Products. 2021;(4):98-117. (In Russ.) https://doi.org/10.36107/spfp.2021.259