Features of dough maturation and bread quality formation with Armillaria mellea mycelium biomass
https://doi.org/10.36107/spfp.2022.297
Abstract
In recent years, the nutritional use of mushrooms has been perceived in a new context: mushrooms are considered as an additional source of minerals, vitamins, specific enzymes and a number of other biologically active substances. Some types of mushrooms can be used as a renewable reserve of dietary protein, including in the production of bakery products. Armillaria mellea differs from many other types of fungi with a higher content of protein nitrogen. The increased accumulation of protein is characteristic not only for the cells of the fruit body, but also for the cells of the mycelium of A. mellea, which determined the purpose of the study – analysis of the effect of the biomass of the mycelium of A. mellea on the biochemical processes of dough maturation and bread quality, for which the authors used standard and industry methods of control of raw materials and semi-finished bakery products, standard methods of microbiological analysis. The agarized biomass of the mycelium of the open autumn strain Armillaria mellea D-13 was used in the work, which was introduced into the dough at the kneading stage after was crushed to a homogeneous paste-like state. The dough was prepared from wheat baking flour of the first grade, agarized mycelium biomass was introduced into the dough at the rate of 2.5-10.0% by weight of flour. According to the results of the research, the dosage limits of the agarized biomass of mycelium – 7.5–10.0% are justified. Bread with this dosage retains the standard quality and does not acquire the characteristic taste and smell of mushrooms. With the hearth baking method, with an increase in the dosage of agarized mycelium biomass, the shape stability index of products decreases from 0.6 to 0.4, with the molded baking method, these undesirable effects are not pronounced.
About the Authors
Denis V. MinakovRussian Federation
Lyudmila A. Kozubaeva
Russian Federation
Svetlana S. Kuzmina
Russian Federation
Elena Yu. Egorova
Russian Federation
References
1. Bilay, V. I. (1982). Metody` e`ksperimental`noj mikologii [Methods of experimental mycology]. Кiev: Naukova Dumka.
2. Vishnevsky, M. V. (2014). Lekarstvenny`e griby`: bol`shaya e`nciklopediya [Medicinal mushrooms. The Big Encyclopedia]. Moscow: Eksmo.
3. Kravchenko, O. A., & Roslyakov, Yu. F. (2011). Texnologiya polucheniya i primeneniya produktov pererabotki gribov veshenka v proizvodstve xlebobulochny`x izdelij povy`shennoj pishhevoj i biologicheskoj cennosti [Technology of reception and application of processing products of mushrooms veshenka in manufacture of bakery products of the higher food and biological value]. Izvestiya vuzov. Pishhevaya texnologiya [Food Technology], 4 (322), 76-77.
4. Minakov, D. V., Sevodina, K. V., Shadrintseva, A. I., & Sevodin, V. P. (2016). Sravnitel`naya ocenka aminokislotnogo i belkovogo sostavov miceliya i plodovy`x tel nekotory`x bazidiomicetov [Comparative assessment of the amino acid and protein composition of the mycelium and fruit bodies of some basidiomycetes]. Izvestiya vuzov. Prikladnaya ximiya i biotexnologiya [Applied chemistry and biotechnology], 6 (3), 50-56. doi:10.21285/2227-2925-2016-6-3-50-56.
5. Musalevskaya, R. S., & Vlasova, M. V. (2010). Obogashhenie xlebobulochny`x izdelij produktami pererabotki dikorastushhix gribov [Enrichment aspects of bakery products with processing fruits of growing wild mushrooms]. Pishhevaya promy`shlennost` [Food Industry], (6), 56-57.
6. Nutriciologiya-2040. Gorizonty` nauki glazami ucheny`x [Nutricitology-2040. Horizons of science through the eyes of scientists]. (2017). Saint Petersburg: Foundation «Center for Strategic Research «North-West».
7. Permyakova, L. V. (2016). Klassifikaciya stimulyatorov zhiznennoj aktivnosti drozhzhej [Classification of preparations to promote yeast vital activity]. Texnika i texnologiya pishhevy`x proizvodstv [Food Processing: Techniques and Technology], 42 (3), 46-55.
8. Strelchenko, E. A., Ivanovsky, P. N., & Gurskaya, A. E. (2019). Izuchenie vozmozhnosti ispol`zovaniya produktov pererabotki kul`tiviruemy`x gribov v texnologii xlebobulochny`x izdelij [Study of the possibility of using products of processing cultivated mushrooms in the technology of bakery products]. Obrazovanie i nauka v Rossii i za rubezhom [Education and science in Russia and abroad], 2 (50), 394-400.
9. Fedorova, R. A., Titova, Yu. A., & Eshnazarova, F. B. (2018). Sposob polucheniya gribnoj dobavki dlya prigotovleniya produktov iz muki [Method of obtaining a mushroom additive for the preparation of flour products]. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta [Proceedings of the St. Petersburg State Agrarian University], (53), 105-108. doi:10.24411/2078-1318-2018-14105.
10. Bakır, T., Boufars, M., Karadeniz, M., Sezgin S. (2018). Amino acid composition and antioxidant properties of five edible mushroom species from Kastamonu, Turkey. African Journal of Traditional, Complementary and Alternative Medicines, 15 (2), 80-87. doi:10.21010/ajtcam.v15i2.10.
11. Bovi, M., Cenci, L., Perduca, M., Capaldi, S., Monaco, H. L., Carrizo, M. E., Civiero, L., Chiarelli, L. R., & Galliano, M. (2013). BEL β-trefoil: a novel lectin with antineoplastic properties in king bolete (Boletus edulis) mushrooms. Glycobiology. 23 (5), 578-592. doi: 10.1093/glycob/cws164.
12. Cheung, P. C. K. (2013). Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Science and Human Wellness, 2 (3-4), 162-166. doi:10.1016/j.fshw.2013.08.001.
13. Colak, A., Faiz, Ö., & Sesli, E. (2009). Nutritional composition of some wild edible mushrooms. Türk Biyokimya Dergisi [Turkish Journal of Biochemistry], 34 (1), 25-31.
14. Erbiai, E. H., da Silva, L. P., Saidi, R., Lamrani, Z., Esteves da Silva, J. C. G., & Maouni, A. (2021). Chemical composition, bioactive compounds, and antioxidant activity of two wild edible mushrooms Armillaria mellea and Macrolepiota procera from two countries (Morocco and Portugal). Biomolecules, 11, 575. doi:10.3390/biom11040575.
15. Friedman, M. (2016). Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 5 (4), 80. doi:10.3390/foods5040080.
16. Ghosh, K. (2016). A Review: Edible mushrooms as source of dietary fiber and its health effects. Journal of Physical Sciences, 21, 129-137. ID: 55139942.
17. Girma, W., & Tasisa, T. (2018). Application of mushroom as food and medicine. Advances in Biotechnology & Microbiology, 11 (4), 555817. doi:10.19080/AIBM.2018.11.555817.
18. González, A., Cruz, M., Losoya, C., Nobre, C., Loredo, A., Rodríguez, R., Contrerasa, J., & Belmares, R. (2020). Edible mushrooms as a novel protein source for functional foods. Food & Function, 11 (9), 7400-7414. doi:10.1039/d0fo01746a.
19. Harris, H. C., Edwards, C. A., & Morrison D. J. (2019). Short Chain fatty acid production from mycoprotein and mycoprotein fibre in an in vitro fermentation model. Nutrients, 11 (800), 1-7. doi:10.3390/nu11040800.
20. Ho, L.-H., Zulkifli, N. A., & Tan, T.-C. (2020). Edible mushroom: nutritional properties, potential nutraceutical values, and its utilisation in food product development. In A. K. Passari & S. Sánchez (Ed.) An Introduction to Mushroom. IntechOpen. doi:10.5772/intechopen.91827.
21. Kostić, М., Smiljković, M., Petrović, J., Glamočlija, J., Barros, L., Ferreira, I. C. F. R., Ćirić, A., & Soković, М. (2017). Chemical, nutritive composition and a wide range of bioactive properties of honey mushroom Armillaria mellea (Vahl: Fr.) Kummer. Food & Function, 8 (9), 3239-3249. doi:10.1039/c7fo00887b.
22. Łopusiewicz, Ł. (2018). The isolation, purification and analysis of the melanin pigment extracted from Armillaria mellea rhizomorphs. World Scientific News, 100, 135-153.
23. Manan, S., Ullah, M. W., Islam, M., Atta, O. M., & Yang, G. (2021). Synthesis and Applications of Fungal Mycelium-based Advanced Functional Materials. Journal of Bioresources and Bioproducts. 6, 1-10. doi:10.1016/j.jobab.2021.01.001.
24. Nagy, M., Socaci, S., Tofana, M., Biris-Dorhoi, E. S., ȚIbulc Ă. D., Petru Ț. G., Salanta, C. L., & Petruț, G. (2017). Chemical composition and bioactive compounds of some wild edible mushrooms. Bulletin UASVM Food Science and Technology, 74 (1). doi:10.15835/buasvmcn-fst:12629.
25. Nile, S. H., & Park, S. W. (2014). Total, soluble, and insoluble dietary fibre contents of wild growing edible mushrooms. Czech Journal of Food Sciences, 32 (3), 302-307. doi:10.17221/226/2013-CJFS.
26. OECD-FAO Agricultural outlook 2017–2026. (2017). Paris: OECD Publishing. doi:10.1787/19991142.
27. Rana, R. (2016). Nutritive analysis of wild edible mushroom Boletus edulis Bull ex. fries colleted from North West Himalayas. International Journal of Innovative Research in Science, Engineering and Technology, 5 (1), 698-704, doi:10.15680/IJIRSET.2015.0501130.
28. Salehi, F. (2019). Characterization of different mushrooms powder and its application in bakery products: A review. International Journal of Food Properties, 22 (1), 1375-1385. doi:10.1080/10942912.2019.1650765.
29. Schwab, C. G., & Whitehouse, N. L. (2022). Feed supplements: ruminally protected amino acids. In P. L.H. McSweeney & J. P. McNamara (Ed.). Encyclopedia of Dairy Sciences (Third edition). Academic Press. 540-547. doi:10.1016/B978-0-08-100596-5.23055-2.
30. Sheridan, K. (2017). Global warming reduces protein in key crops: study (August 2) retrieved 21 July 2021 from https://phys.org/news/2017-08-millions-protein-deficiency-result-human-caused.html.
31. Simon, R. R., Borzelleca, J. F., De Luca, H. F., & Weaver, C. M. (2013). Safety assessment of the post-harvest treatment of button mushrooms (Agaricus bisporus) using ultraviolet light. Food and Chemical Toxicology, 56, 278-289. doi:10.1016/j.fct.2013.02.009.
32. Süfer, Ö., Bozok, F., & Demir, H. (2016). Usage of edible mushrooms in various food products. Turkish Journal of Agriculture – Food Science and Technology, 4 (3), 144-149. doi:10.24925/turjaf.v4i3.144-149.599.
33. Ugbogu, E. A., & Ugbogu, O. C. (2016). A review of microbial protein production: prospects and challenges. FUW Trends in Science and Technology Journal, 1 (1), 182-185.
34. Ukwuru, M. U., Muritala, A., & Eze, L. U. (2018). Edible and non-edible wild mushrooms: nutrition, toxicity and strategies for recognition. Journal of Clinical Nutrition and Metabolism, 2 (2), 1000117.
35. Waktola, G., & Temesgen, T. (2018). Application of mushroom as food and medicine. Advances in Biotechnology & Microbiology, 11 (4): 555817, 97-101. doi:10.19080/AIBM.2018.11.555817.
36. Zavastin, D. Е., Mircea, C., Aprotosoaie, A. C., Gherman, S., Hancianu, M., & Miron, A. (2015). Armillaria mellea: phenolic content, in vitro antioxidant and antihyperglycemic effects. Revista medico-chirurgicală̆̆̆ a Societă̆̆̆t ̧̜ii de Medici ş̧̜̜i Naturaliş̧̜̜ti din Iaş̧̜̜i, 119 (1), 273-280.
37. Zhang, S., Liu, X., Yan, L., Zhang, Q., Zhu, J., Huang, N., Wang, Z. (2015). Chemical compositions and antioxidant activities of polysaccharides from the sporophores and cultured products of Armillaria mellea. Molecules, 20 (4), 5680-5697. doi:10.3390/molecules20045680.
38. Zhou, J., Chen, M., Wu, S., Liao, X., Wang, J., Wu, Q., Zhuang, M., & Ding, Y. (2020). A review on mushroom-derived bioactive peptides: preparation and biological activities. Food Research International, 134, 109230. doi:10.1016/j.foodres.2020.109230.
Supplementary files
![]() |
1. статья в формате PDF | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(476KB)
|
Indexing metadata ▾ |
Review
For citations:
Minakov D.V., Kozubaeva L.A., Kuzmina S.S., Egorova E.Yu. Features of dough maturation and bread quality formation with Armillaria mellea mycelium biomass. Storage and Processing of Farm Products. 2022;(1):145-156. (In Russ.) https://doi.org/10.36107/spfp.2022.297