Preview

Storage and Processing of Farm Products

Advanced search

Study of the Influence of Reflector Characteristics on the Process of Drying Foodstuffs

https://doi.org/10.36107/spfp.2023.313

Abstract

Introduction. Drying is an efficient food preservation technology. When using infrared drying lamps, one of the disadvantages is the uneven heating of the product over the surface of the trays,which causes overheating in one part of the tray and underdrying in the other part. Little attention is paid to research in this area, so the search for ways to ensure uniform heating of product trays during infrared drying is an urgent task.


Purpose. The purpose of this work was to select the characteristics of the reflector of an infrared drying lamp, such as the focal length of the cylinder paraboloid, the depth of the parabola and the location of the source from the surface of the tray to ensure uniform heating of the tray with raw materials and increase the energy saving of infrared drying.


Materials and Methods. With the help of the program, an optical system of heat supply was modeled and the distribution of the thermal radiation flux density over the surface of the tray was studied. A radiation source was modeled in the form of a cylindrical infrared lamp, 10 mm in diameter, 400 mm long, and a tray with raw materials, 400x400 mm in size. The analysis was carried out with the number of rays 50,000.


Results. In the course of the study, the parameters of the parabolic radiator were selected: the focal length of the reflector is 70 mm, the depth of the reflector is 200 mm, the distance between the tray and the lamp is 152 mm. The main parameters of a parabolic reflector are focal length and depth. The last characteristic was chosen at 200 mm in order to preserve as much as possible the entire radiation flux from the lamp, directing it to the tray.Experiments were carried out on infrared drying of grapes using a selected reflector and without it. The simulated reflector makes it possible to reduce the difference in moisture content between the dry product located on the periphery and in the center of the tray.


Conclusions. The design of the reflector proposed in the work provides more uniform heating of the product over the entire area of the tray. Experiments on drying grape berries were carried out, confirming the results of calculations. A possible direction for further research may be to study the distribution of the light flux in reflectors of a different design to ensure optimal uniformity of the incidence of light rays on the area of the tray with the smallest possible size of the drying chamber and the lowest energy loss of the emitter to the environment. 

About the Author

Vladimir A. Ermolaev
Kuzbass State Agricultural Academy
Russian Federation


References

1. Афонькина, В. А. (2012). Теоретические аспекты обоснования выбора пленочных ИК – излучателей для сушки термолабильных культур. Вестник Челябинской государственной агроинженерной академии, 62, 5-9.

2. Ермолаев, В. А., & Расщепкин, А. Н. (2009). Определение температур вакуумной сушки твердых сыров. Сыроделие и маслоделие, (4), 44-45.

3. Завалий, А. А., & Янович, И. В. (2010). Влияние формы отражающих поверхностей на равномерность облучения продукта сушки в инфракрасной сушильной камере. Харчова наука і технологія, (4), 91-95.

4. Зудин, Е. С., Попов, Е. С., & Афонькина, В. А. (2017). К Вопросу об инфракрасной сушке макаронных изделий. В Актуальные проблемы энергетики АПК: Материалы VIII международной научно-практической конференции (с. 89-92). Саратов: Саратовский ГАУ.

5. Просеков, А. Ю., Ермолаев, В. А., & Солдатова, Л. С. (2010). Аминокислотный состав сыров до и после вакуумной сушки. Сыроделие и маслоделие, (1), 30-31.

6. Черевко, А. И., Киптелая, Л. В., & Киптелая, А. Н. (2015). Разработка ИК-сушилки с оптимальной формой камеры. Технологический аудит и резервы производства, (3), 4-9.

7. Aboltins A., Palabinskis, J., & Vartukapteinis, K. (2017). Studies of berry drying process in infrared film dryer. In Proceedings of the international scientific conference Latvia University of Agriculture (pp. 1515-1520). Latvia: Latvia University of Agriculture. https://doi.org/10.22616/ERDev2017.16.N341

8. Aboltins, A., & Palabinskis, J. (2017). Studies of vegetable drying process in infrared film dryer. Agronomy Research, 15(2), 1259-1266.

9. Adak, N., Heybeli, N., & Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219, 109-116. https://doi.org/10.1016/j.foodchem.2016.09.103

10. Baptestini, F. M., Correa, P. C., Oliveira, G. H. H. D., Botelho, F. M., & Oliveira, A. P. L. R. D. (2017). Heat and mass transfer coefficients and modeling of infrared drying of banana slices. Revista Ceres, 64(5), 457-464. https://doi.org/10.1590/0034-737x201764050002

11. Chen, J., Yang, L., Zhang, Z., Wei, J., & Yang, J. (2017). Optimization of a uniform solar concentrator with absorbers of different shapes. Solar Energy, 158, 396-406. https://doi.org/10.1016/j.solener.2017.09.061

12. Ermolaev, V. A. (2018). Research of vacuum drying peculiarities of wild berries. Biointerface Research in Applied Chemistry, 8(4), 3483-3489.

13. Ermolaev, V. A. (2020). The study of the microstructure of cheese before and after vacuum drying. Biointerface Research in Applied Chemistry, 10(4), 6007-6014. https://doi.org/10.33263/BRIAC104.007014

14. Ermolaev, V. A., Kechkin, I. A., Romanenko, A. I., Buzetti, K. D., Ivanov, M. V., & Makhacheva, E. V. (2021a). Study of temperature regime effect on the process of cheeses vacuum drying. Earth and Environmental Science, 640, Article 032040. https://doi:10.1088/1755-1315/640/3/032040

15. Ermolaev, V., Kechkin, I., Makhacheva, E., Yakovchenko, M., Gurkovskaya, E., & Glebova, I. (2021b). Selection of effective technological parameters for vacuum drying of hard cheeses. Earth and Environmental Science, 659, Article 012064. https://doi:10.1088/1755-1315/659/1/012064

16. Grdzelishvili, G., & Hoffman, P. (2012). Infrared drying of food products. Prague: Czech Technical University in Prague.

17. Popov, V., Afonkina, V., Levinskii, V., Zudin, E., & Krivosheeva, E. (2019). Designing the infrared drying machines of cylindrical type with an active reflector. Earth and Environmental Science, 403(1), Article 012008. https://doi.org/10.1088/1755-1315/403/1/012008

18. Rasane, P. (2016). Recent advances in conventional drying of foods: A review. Journal of Food Technology and Preservation, 1, 24-34.

19. Sakare, P., Prasad, N., Thombare, N., Singh, R., & Chandra, S. (2020). Infrared Drying of Food Materials: Recent Advances. Food Engineering Reviews, 12, 381-398. https://doi.org/10.1007/s12393-020-09237-w

20. Samani, B. H., Gudarzi, H., Rostami, S., Lorigooini, Z., Esmaeili, Z., & Jamshidi-Kia, F. (2018). Development and optimization of the new ultrasonic-infrared-vacuum dryer in drying Kelussia odoratissima and its comparison with conventional methods. Industrial Crops and Products, 123, 46-54. https://doi.org/10.1016/j.indcrop.2018.06.053

21. Si, X., Chen, Q., Bi, J., Wu, X., & Li, Z. (2016). Effect of infrared drying on the drying characteristics, quality and antioxidant activity of raspberry. Journal of food process engineering, 16, 157-164. https://doi.org/10.16429/j.1009-7848.2016.09.022

22. Tysén, A., Vomhoff, H., & Nilsson, L. (2018). Through air drying assisted by infrared radiation: the influence of radiator power on drying rates and temperature. Nordic Pulp & Paper Research Journal, 33(4), 581-591. https://doi.org/10.1515/npprj-2018-2002

23. Verspeek, S., Ribbens, B., Maldague, X., Steenackers, G. (2020). Optimisation of a heat source for infrared thermography measurements: Comparison to mehler engineering service-heater. Applied Sciences, 10(4), Article 1285. https://doi.org/10.3390/app10041285

24. Waghmare, S. A., & Gulhane, N. P. (2016). Design and ray tracing of a compound parabolic collector with tubular receiver. Solar Energy, 137, 165-172. https://doi.org/10.1016/j.solener.2016.08.009

25. Xie, L., Mujumdar, A. S., Fang, X. M., Wang, J., Dai, J. W., Du, Z. L., Xiao, H. W., Liu, Y., & Gao, Z. J. (2017). Far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD) of wolfberry (Lycium barbarum L.): Effects on drying kinetics and quality attributes. Food and Bioproducts Processing, 102, 320-331. https://doi.org/10.1016/j.fbp.2017.01.012

26. Yan, J. K., Wu, L. X., Qiao, Z. R., Cai, W. D., & Ma, H. (2019). Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chemistry, 271, 588-596. https://doi.org/10.1016/j.foodchem.2018.08.012


Review

For citations:


Ermolaev V.A. Study of the Influence of Reflector Characteristics on the Process of Drying Foodstuffs. Storage and Processing of Farm Products. 2023;(1):45-56. (In Russ.) https://doi.org/10.36107/spfp.2023.313

Views: 312


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)