Влияние предварительной обработки импульсным электрическим полем на процесс сушки: обзор предметного поля
https://doi.org/10.36107/spfp.2023.418
Аннотация
Введение: Основное влияние на качество сушеных продуктов, включая физико-химические, микробиологические, органолептические показатели и пищевую ценность, оказывает используемый технологический процесс сушки. Цель данной статьи —критический обзор результатов опубликованных научных исследований применения импульсного электрического поля, с целью обработки пищевых продуктов перед процессом сушки.
Материалы и методы: Поиск научной литературы на английском языке по вопросам влияния предварительной обработки сырья импульсным электрическим полем на процесс сушки и качество готовой сушеной продукции проводили в библиографических базах «Scopus» и «Web of Science». В качестве временных рамок для обзора научных публикаций был принят период 2006–2023 гг. При отборе публикаций для обзора приоритет отдавали высокоцитируемым источникам (показатель цитируемости выше 3). Протокол PRIZMA отражает этапы отбора источников. Результаты анализа источников представлены в виде таблиц и диаграмм для визуализации данных. Материалами для исследования послужили 126 статей.
Результаты: Сушка с применением предварительной обработки импульсным электрическим полем способствует сохранению физико химических свойств высушенных продуктов, их цвета и содержащихся биологически активных соединений, а также улучшает кинетику сушки. В отличие от традиционных технологий, сушка с использованием импульсного электрического поля обеспечивает селективную дезинтеграцию клеток, не оказывая при этом отрицательного воздействия на качество продукта. Предварительная обработка импульсным электрическим полем вызывает инактивацию микроорганизмов и окислительных ферментов, что способствует максимальному сохранению качественных показателей готового продукта после сушки. Плоды и овощи, предварительно обработанные импульсным электрическим, обладают улучшенными качественными показателями после сушки по сравнению с теми, которые не подвергались обработке. Готовые продукты, обработанные импульсным электрическим полем перед сушкой, имели более насыщенный цвет и более высокую антиоксидантную активность, а также время процесса сушки таких продуктов значительно короче.
Выводы: Предварительная обработка импульсным электрическим полем перед сушкой способствует сокращению времени сушки, снижению энергоемкости и сохранению биологически активных соединений в готовом продукте. Материалы данной статьи могут быть использованы при проведении дальнейших научных исследований и промышленного использования данной технологии обработки.
Об авторах
Леонид Чеславович БуракБеларусь
Александр Николаевич Сапач
Беларусь
Список литературы
1. Al-Sayed, L., Boy, V., Madieta, E., Mehinagic, E., & Lanoisellé, J.-L. (2018). Pulsed electric fields (ИЭП) as pre-treatment for freeze-drying of plant tissues. IDS’2018—21st international drying symposium València, Spain, 11–14 September 2018. https://doi.org/10.4995/ids2018.2018.7484
2. Alam, M. R., Lyng, J. G., Frontuto, D., Marra, F., & Cinquanta, L. (2018). Effect of pulsed electric field pretreatment on drying kinetics, color, and texture of parsnip and carrot. Journal of Food Science, 83(8), 2159– 2166. https://doi.org/10.1111/1750-3841.14216
3. Arshad, R. N., Abdul-Malek, Z., Munir, A., Buntat, Z., Ahmad, M. H., Jusoh, Y. M. M., Bekhit, A. E. D., Roobab, U., Manzoor, M. F., & Aadil, R. M. (2020). Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in Food Science and Technology, 104, 1– 13. https://doi.org/10.1016/j.tifs.2020.07.008
4. Arshad, R. N., Abdul-Malek, Z., Roobab, U., Munir, M. A., Naderipour, A., Qureshi, M. I., El-Din Bekhit, A., Liu, Z. W., & Aadil, R. M. (2021). Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science and Technology, 111, 43– 54. https://doi.org/10.1016/j.tifs.2021.02.041
5. Asavasanti, S., Ristenpart, W., Stroeve, P., & Barrett, D. M. (2011). Permeabilization of plant tissues by monopolar pulsed electric fields: Effect of frequency. Journal of Food Science, 76(1), E98– E111. https://doi.org/10.1111/j.1750-3841.2010.01940.x
6. Barba, F. J., Parniakov, O., Pereira, S. A., Wiktor, A., Grimi, N., Boussetta, N., Saraiva, J. A., Raso, J., Martin-Belloso, O., Witrowa-Rajchert, D., Lebovka, N., & Vorobiev, E. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77, 773– 798. https://doi.org/10.1016/j.foodres.2015.09.015
7. Bobinaitė, R., Pataro, G., Lamanauskas, N., Šatkauskas, S., Viškelis, P., & Ferrari, G. (2015). Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. Journal of Food Science and Technology, 52(9), 5898– 5905. https://doi.org/10.1007/s13197-014-1668-0
8. Bozkir, H. (2020). Effects of hot air, vacuum infrared, and vacuum microwave dryers on the drying kinetics and quality characteristics of orange slices. Journal of Food Process Engineering, 43(10), 1– 12. https://doi.org/10.1111/jfpe.13485
9. Buchmann, L., & Mathys, A. (2019). Perspective on pulsed electric field treatment in the bio-based industry. Frontiers in Bioengineering and Biotechnology, 7, 1– 7. https://doi.org/10.3389/fbioe.2019.00265
10. Chauhan, O. P., Sayanfar, S., & Toepfl, S. (2018). Effect of pulsed electric field on texture and drying time of apple slices. Journal of Food Science and Technology, 55(6), 2251– 2258. https://doi.org/10.1007/s13197-018-3142-x
11. Chen, B., Chang, C., Cheng, K., Hou, C., Lin, J., Chen, M., Permatasari, S., Chen, C., & Hsieh, C. (2022). Using the response surface methodology to establish the optimal conditions for preserving bananas (Musa acuminata) in a pulsed electric field and to decrease browning induced by storage at a low temperature. Food Packaging and Shelf Life, 31(July 2021), 100804. https://doi.org/10.1016/j.fpsl.2021.100804
12. Chen, B. R., Wang, Z. M., Lin, J. W., Wen, Q. H., Xu, F. Y., Li, J., Wang, R., & Zeng, X. A. (2022). Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field. Food Hydrocolloids, 129(March), 107655. https://doi.org/10.1016/j.foodhyd.2022.107655
13. Dalvi-Isfahan, M., Hamdami, N., Le-Bail, A., & Xanthakis, E. (2016). The principles of high voltage electric field and its application in food processing: A review. Food Research International, 89(Pt. 1), 48– 62. https://doi.org/10.1016/j.foodres.2016.09.002
14. Dellarosa, N., Tappi, S., Ragni, L., Laghi, L., Rocculi, P., & Dalla Rosa, M. (2016). Metabolic response of fresh-cut apples induced by pulsed electric fields. Innovative Food Science and Emerging Technologies, 38, 356– 364. https://doi.org/10.1016/j.ifset.2016.06.016
15. Demir, E., Dymek, K., & Galindo, F. G. (2018). Technology allowing baby spinach leaves to acquire freezing tolerance. Food and Bioprocess Technology, 11(4), 809– 817. https://doi.org/10.1007/s11947-017-2044-7
16. Devkota, L., He, L., Bittencourt, C., Midgley, J., & Haritos, V. S. (2022). Thermal and pulsed electric field (ИЭП) assisted hydration of common beans. LWT - Food Science and Technology, 158, 113163. https://doi.org/10.1016/j.lwt.2022.113163
17. Dhua, S., Kumar, K., Sharanagat, V. S., & Nema, P. K. (2022). Bioactive compounds and its optimization from food waste: Review on novel extraction techniques. Nutrition and Food Science, . https://doi.org/10.1108/NFS-12-2021-0373
18. El Kantar, S., Boussetta, N., Lebovka, N., Foucart, F., Rajha, H. N., Maroun, R. G., Louka, N., & Vorobiev, E. (2018). Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction. Innovative Food Science and Emerging Technologies, 46(October 2017), 153– 161. https://doi.org/10.1016/j.ifset.2017.09.024
19. Fauster, T., Schlossnikl, D., Rath, F., Ostermeier, R., Teufel, F., Toepfl, S., & Jaeger, H. (2018). Impact of pulsed electric field (ИЭП) pretreatment on process performance of industrial French fries production. Journal of Food Engineering, 235, 16– 22. https://doi.org/10.1016/j.jfoodeng.2018.04.023
20. Ferreira-Holderbaum, D., Kon, T., Kudo, T., & Pedro Guerra, M. (2010). Enzymatic browning, polyphenol oxidase activity, and polyphenols in four apple cultivars: Dynamics during fruit development. HortScience, 45(8), 1150– 1154.
21. Gamboa-Santos, J., Megías-Pérez, R., Soria, A. C., Olano, A., Montilla, A., & Villamiel, M. (2014). Impact of processing conditions on the kinetic of vitamin C degradation and 2-furoylmethyl amino acid formation in dried strawberries. Food Chemistry, 153, 164– 170. https://doi.org/10.1016/j.foodchem.2013.12.004
22. Gavahian, M., Chu, Y. H., & Sastry, S. (2018). Extraction from food and natural products by moderate electric field: Mechanisms, benefits, and potential industrial applications. Comprehensive Reviews in Food Science and Food Safety, 17(4), 1040– 1052. https://doi.org/10.1111/1541-4337.12362
23. Gavahian, M., & Farahnaky, A. (2018). Ohmic-assisted hydrodistillation technology: A review. Trends in Food Science and Technology, 72(September 2017), 153– 161. https://doi.org/10.1016/j.tifs.2017.12.014
24. Gavahian, M., Pallares, N., Al Khawli, F., Ferrer, E., & Barba, F. J. (2020). Recent advances in the application of innovative food processing technologies for mycotoxins and pesticide reduction in foods. Trends in Food Science and Technology, 106(October), 209– 218. https://doi.org/10.1016/j.tifs.2020.09.018
25. Gavahian, M., & Tiwari, B. K. (2020). Moderate electric fields and ohmic heating as promising fermentation tools. Innovative Food Science and Emerging Technologies, 64(November 2019), 102422. https://doi.org/10.1016/j.ifset.2020.102422
26. Ghasemi, J., Moradi, M., Karparvarfard, S. H., Golmakani, M. T., & Khaneghah, A. M. (2021). Thin layer drying kinetics of lemon verbena leaves: A quality assessment and mathematical modeling. Quality Assurance and Safety of Crops & Foods, 13(1), 59– 72. https://doi.org/10.15586/qas.v13i1.835
27. Golberg, A., Sack, M., Teissie, J., Pataro, G., Pliquett, U., Saulis, G., Stefan, T., Miklavcic, D., Vorobiev, E., & Frey, W. (2016). Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 9(1), 1– 22. https://doi.org/10.1186/s13068-016-0508-z
28. Gómez, B., Munekata, P. E. S., Gavahian, M., Barba, F. J., Martí-Quijal, F. J., Bolumar, T., Campagnol, P. C. B., Tomasevic, I., & Lorenzo, J. M. (2019). Application of pulsed electric fields in meat and fish processing industries: An overview. Food Research International, 123(April), 95– 105. https://doi.org/10.1016/j.foodres.2019.04.047
29. Guionet, A., Fujiwara, T., Sato, H., Takahashi, K., Takaki, K., Matsui, M., Tanino, T., & Ohshima, T. (2021). Pulsed electric fields act on tryptophan to inactivate α-amylase. Journal of Electrostatics, 112(May), 103597. https://doi.org/10.1016/j.elstat.2021.103597
30. Guionet, A., David, F., Zaepffel, C., Coustets, M., Helmi, K., Cheype, C., Packan, D., Garnier, J. P., Blanckaert, V., & Teissié, J. (2015). E. coli electroeradication on a closed loop circuit by using milli-, micro- and nanosecond pulsed electric fields: Comparison between energy costs. Bioelectrochemistry, 103, 65– 73. https://doi.org/10.1016/j.bioelechem.2014.08.021
31. Han, Z., Cai, M. J., Cheng, J. H., & Sun, D. W. (2018). Effects of electric fields and electromagnetic wave on food protein structure and functionality: A review. Trends in Food Science and Technology, 75(February), 1– 9. https://doi.org/10.1016/j.tifs.2018.02.017
32. Heinz, V., Toepfl, S. (2022). Pulsed electric fields industrial equipment design. In J. Raso, V. Heinz, I. Alvarez, & S. Toepfl (Eds.), Pulsed electric fields technology for the food industry. Food engineering series (pp. 489– 504). Springer. https://doi.org/10.1007/978-3-030-70586-2_17
33. Hill, K., Ostermeier, R., Töpfl, S., Heinz, V. (2022). Pulsed electric fields in the potato industry. In J. Raso, V. Heinz, I. Alvarez, & S. Toepfl (Eds.), Pulsed electric fields technology for the food industry. Food engineering series (pp. 325– 335). Springer. https://doi.org/10.1007/978-3-030-70586-2_9
34. Huang, D., Men, K., Li, D., Wen, T., Gong, Z., Sunden, B., & Wu, Z. (2020). Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry, 63, 104950. https://doi.org/10.1016/j.ultsonch.2019.104950
35. Iaccheri, E., Castagnini, J. M., Rosa, D. M., & Rocculi, P. (2021). New insights into the glass transition of dried fruits and vegetables and the effect of pulsed electric field treatment. Innovative Food Science and Emerging Technologies, 67(November), 102566. https://doi.org/10.1016/j.ifset.2020.102566
36. Iaccheri, E., Castagnini, J. M., Tylewicz, U., & Rocculi, P. (2021). Modelling the mechanical properties and sorption behaviour of pulsed electric fields (ИЭП) treated carrots and potatoes after air drying for food chain management. Biosystems Engineering, . https://doi.org/10.1016/j.biosystemseng.2021.09.011
37. Jacobo-Velázquez, D. A., Cuéllar-Villarreal, M. del R., Welti-Chanes, J., Cisneros-Zevallos, L., Ramos-Parra, P. A., & Hernández-Brenes, C. (2017). Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends in Food Science and Technology, 60, 80– 87. https://doi.org/10.1016/j.tifs.2016.10.021
38. Jacobo-Velázquez, D. A., Martínez-Hernández, G. B., Del C Rodríguez, S., Cao, C. M., & Cisneros-Zevallos, L. (2011). Plants as biofactories: Physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. Journal of Agricultural and Food Chemistry, 59(12), 6583– 6593. https://doi.org/10.1021/jf2006529
39. Jin, T. Z., Yu, Y., & Gurtler, J. B. (2017). Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT - Food Science and Technology, 77, 517– 524. https://doi.org/10.1016/j.lwt.2016.12.009
40. Kandušer, M., Belič, A., Čorović, S., & Škrjanc, I. (2017). Modular Serial Flow Through device for pulsed electric field treatment of the liquid samples. Scientific Reports, 7(1), 1– 12. https://doi.org/10.1038/s41598-017-08620-8
41. Kempkes, M., & Munderville, M. (2018). Pulsed electric fields (ИЭП) processing of fruit and vegetables. 2017 IEEE 21st International Conference on Pulsed Power (PPC). https://doi.org/10.1109/PPC.2017.8291186
42. Kumar, Y., Bashir, A. A., & NIndore, R. K. V., R, K. S. (2021). Pulsed electric field. In C. M. Galanakis (Ed.), Sustainable food processing and engineering challenges (pp. 137– 179). Academic Press. https://doi.org/10.1016/B978-0-12-822714-5.00005-X
43. Kwao, S., Al-Hamimi, S., Damas, M. E. V., Rasmusson, A. G., & Gómez Galindo, F. (2016). Effect of guard cells electroporation on drying kinetics and aroma compounds of Genovese basil (Ocimum basilicum L.) leaves. Innovative Food Science and Emerging Technologies, 38, 15– 23. https://doi.org/10.1016/j.ifset.2016.09.011
44. Lamanauskas, N., Šatkauskas, S., Bobinaite, R., & Viškelis, P. (2015). Pulsed electric field (ИЭП) impact on Actinidia kolomikta drying efficiency. Journal of Food Process Engineering, 38(3), 243– 249. https://doi.org/10.1111/jfpe.12161
45. Lammerskitten, A., Mykhailyk, V., Wiktor, A., Toepfl, S., Nowacka, M., Bialik, M., Czyżewski, J., Witrowa-Rajchert, D., & Parniakov, O. (2019). Impact of pulsed electric fields on physical properties of freeze-dried apple tissue. Innovative Food Science and Emerging Technologies, 57(March), 102211. https://doi.org/10.1016/j.ifset.2019.102211
46. Lammerskitten, A., Shorstkii, I., Parniakov, O., Mykhailyk, V., Toepfl, S., Rybak, K., Dadan, M., Nowacka, M., & Wiktor, A. (2020). The effect of different methods of mango drying assisted by a pulsed electric field on chemical and physical properties. Journal of Food Processing and Preservation, 44(12), 1– 9. https://doi.org/10.1111/jfpp.14973
47. Lammerskitten, A., Wiktor, A., Siemer, C., Toepfl, S., Mykhailyk, V., Gondek, E., Rybak, K., Witrowa-Rajchert, D., & Parniakov, O. (2019). The effects of pulsed electric fields on the quality parameters of freeze-dried apples. Journal of Food Engineering, 252(February), 36– 43. https://doi.org/10.1016/j.jfoodeng.2019.02.006
48. Lasekan, O., Ng, S., Azeez, S., Shittu, R., Teoh, L., & Gholivand, S. (2017). Effect of pulsed electric field processing on flavor and color of liquid foods. Journal of Food Processing and Preservation, 41(3), 1– 14. https://doi.org/10.1111/jfpp.12940
49. Li, J., Shi, J., Huang, X., Wang, T., Zou, X., Li, Z., Zhang, D., Zhang, W., & Xu, Y. (2020). Effects of pulsed electric field pretreatment on frying quality of fresh-cut lotus root slices. LWT - Food Science and Technology, 132, 109873. https://doi.org/10.1016/j.lwt.2020.109873
50. Li, X., Li, J., Wang, R., Rahaman, A., Zeng, X. A., & Brennan, C. S. (2021). Combined effects of pulsed electric field and ultrasound pretreatments on mass transfer and quality of mushrooms. LWT - Food Science and Technology, 150(May), 112008. https://doi.org/10.1016/j.lwt.2021.112008
51. Liu, C., Grimi, N., Bals, O., Lebovka, N., & Vorobiev, E. (2021). Effects of pulsed electric fields and preliminary vacuum drying on freezing assisted processes in potato tissue. Food and Bioproducts Processing, 125, 126– 133. https://doi.org/10.1016/j.fbp.2020.11.002
52. Liu, C., Grimi, N., Lebovka, N., & Vorobiev, E. (2018). Effects of pulsed electric fields treatment on vacuum drying of potato tissue. LWT - Food Science and Technology, 95(April), 289– 294. https://doi.org/10.1016/j.lwt.2018.04.090
53. Liu, C., Pirozzi, A., Ferrari, G., Vorobiev, E., & Grimi, N. (2020). Effects of pulsed electric fields on vacuum drying and quality characteristics of dried carrot. Food and Bioprocess Technology, 13(1), 45– 52. https://doi.org/10.1007/s11947-019-02364-1
54. Llavata, B., García-Pérez, J. V., Simal, S., & Cárcel, J. A. (2020). Innovative pre-treatments to enhance food drying: A current review. Current Opinion in Food Science, 35, 20– 26. https://doi.org/10.1016/j.cofs.2019.12.001
55. López-Gámez, G., Elez-Martínez, P., Martín-Belloso, O., & Soliva-Fortuny, R. (2020). Pulsed electric fields affect endogenous enzyme activities, respiration and biosynthesis of phenolic compounds in carrots. Postharvest Biology and Technology, 168, 111284. https://doi.org/10.1016/j.postharvbio.2020.111284
56. López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., & Di Scala, K. (2010). Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety O'Neil. Food and Bioprocess Technology, 3(5), 772– 777. https://doi.org/10.1007/s11947-009-0306-8
57. Lung, C. T., Chang, C. K., Cheng, F. C., Hou, C. Y., Chen, M. H., Santoso, S. P., Yudhistira, B., & Hsieh, C. W. (2022). Effects of pulsed electric field-assisted thawing on the characteristics and quality of Pekin duck meat. Food Chemistry, 390(October 2021), 133137. https://doi.org/10.1016/j.foodchem.2022.133137
58. Mahnič-Kalamiza, S., Vorobiev, E., & Miklavčič, D. (2014). Electroporation in food processing and biorefinery. Journal of Membrane Biology, 247(12), 1279– 1304. https://doi.org/10.1007/s00232-014-9737-x
59. Mannozzi, C., Tylewicz, U., Tappi, S., Rosa, M. D., Rocculi, P., & Romani, S. (2020). The influence of different pre-treatments on the quality and nutritional characteristics in dried undersized yellow kiwifruit. Applied Sciences, 10(23), 1– 13. https://doi.org/10.3390/app10238432
60. Masood, H., Diao, Y., Cullen, P. J., Lee, N. A., & Trujillo, F. J. (2018). A comparative study on the performance of three treatment chamber designs for radio frequency electric field processing. Computers and Chemical Engineering, 108, 206– 216. https://doi.org/10.1016/j.compchemeng.2017.09.009
61. Meza-Jiménez, M., De, L., Pokhrel, P. R., Robles de la Torre, R. R., Barbosa-Canovas, G. V., & Hernández-Sánchez, H. (2019). Effect of pulsed electric fields on the activity of food-grade papain in a continuous system. LWT - Food Science and Technology, 109(2018), 336– 341. https://doi.org/10.1016/j.lwt.2019.04.037
62. Mohamed, M., & Eissa, A. (2012). Pulsed electric fields for food processing technology. In A. Amer Eissa (Ed.), Structure and function of food engineering (pp. 275– 306). InTech. http://cdn.intechopen.com/pdfs/38363/InTech-
63. Pulsed_electric_fields_for_food_processing_technology.pdf
64. Morales-de la Peña, M., Welti-Chanes, J., & Martín-Belloso, O. (2019). Novel technologies to improve food safety and quality. Current Opinion in Food Science, 30, 1– 7. https://doi.org/10.1016/j.cofs.2018.10.009
65. Mousakhani-Ganjeh, A., Amiri, A., Nasrollahzadeh, F., Wiktor, A., Nilghaz, A., Pratap-Singh, A., & Mousavi Khaneghah, A. (2021). Electro-based technologies in food drying - A comprehensive review. LWT - Food Science and Technology, 145(March), 111315. https://doi.org/10.1016/j.lwt.2021.111315
66. Neri, L., Giancaterino, M., Rocchi, R., Tylewicz, U., Valbonetti, L., Faieta, M., & Pittia, P. (2021). Pulsed electric fields (ИЭП) as hot air drying pre-treatment: Effect on quality and functional properties of saffron (Crocus sativus L.). Innovative Food Science and Emerging Technologies, 67(2020), 102592. https://doi.org/10.1016/j.ifset.2020.102592
67. Nguyen, T. M. C., Gavahian, M., & Tsai, P. J. (2021). Effects of ultrasound-assisted extraction (UAE), high voltage electric field (HVEF), high pressure processing (HPP), and combined methods (HVEF+UAE and HPP+UAE) on Gac leaves extraction. LWT - Food Science and Technology, 143(February), 111131. https://doi.org/10.1016/j.lwt.2021.111131
68. Nowacka, M., Wiktor, A., Anuszewska, A., Dadan, M., Rybak, K., & Witrowa-Rajchert, D. (2019). The application of unconventional technologies as pulsed electric field, ultrasound and microwave-vacuum drying in the production of dried cranberry snacks. Ultrasonics Sonochemistry, 56, 1– 13. https://doi.org/10.1016/j.ultsonch.2019.03.023
69. Nowosad, K., Sujka, M., Pankiewicz, U., & Kowalski, R. (2021). The application of ИЭП technology in food processing and human nutrition. Journal of Food Science and Technology, 58(2), 397– 411. https://doi.org/10.1007/s13197-020-04512-4
70. Ostermeier, R., Giersemehl, P., Siemer, C., Töpfl, S., & Jäger, H. (2018). Influence of pulsed electric field (ИЭП) pre-treatment on the convective drying kinetics of onions. Journal of Food Engineering, 237(May), 110– 117. https://doi.org/10.1016/j.jfoodeng.2018.05.010
71. Ostermeier, R., Parniakov, O., Töpfl, S., & Jäger, H. (2020). Applicability of pulsed electric field (ИЭП) pre-treatment for a convective two-step drying process. Foods, 9(4), 9– 12. https://doi.org/10.3390/foods9040512
72. Pang, L., Lu, G., Cheng, J., Lu, X., Ma, D., Li, Q., Li, Z., Zheng, J., Zhang, C., & Pan, S. (2021). Physiological and biochemical characteristics of sweet potato (Ipomoea batatas (L.) Lam) roots treated by a high voltage alternating electric field during cold storage. Postharvest Biology and Technology, 180(June), 111619. https://doi.org/10.1016/j.postharvbio.2021.111619
73. Parniakov, O., Lebovka, N. I., Bals, O., & Vorobiev, E. (2015). Effect of electric field and osmotic pre-treatments on quality of apples after freezing-thawing. Innovative Food Science and Emerging Technologies, 29, 23– 30. https://doi.org/10.1016/j.ifset.2015.03.011
74. Parniakov, O., Lebovka, N. I., Van Hecke, E., & Vorobiev, E. (2014). Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus bisporus). Food and Bioprocess Technology, 7(1), 174– 183. https://doi.org/10.1007/s11947-013-1059-y
75. Parniakov, O., Bals, O., Lebovka, N., & Vorobiev, E. (2016). Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innovative Food Science and Emerging Technologies, 35, 52– 57. https://doi.org/10.1016/j.ifset.2016.04.002
76. Pataro, G., & Ferrari, G. (2020). Limitations of pulsed electric field utilization in food industry. In F. J. Barba, O. Parniakov, & A. Wiktor (Eds.), Pulsed electric fields to obtain healthier and sustainable food for tomorrow (pp. 283– 310). Academic Press. https://doi.org/10.1016/b978-0-12-816402-0.00013-6
77. Patel, S. M., Jameel, F., Sane, S. U., & Kamat, M. (2015). Lyophilization process design and development using QbD principles. In F. Jameel, S. Hershenson, M. Khan, & S. Martin-Moe (Eds.), Quality by design for biopharmaceutical drug product development (Vol. 18, pp. 303– 329). Springer Science + Business Media. https://doi.org/10.1007/978-1-4939-2316-8_14
78. Pereira, R. N., Galindo, F. G., Vicente, A. A., & Dejmek, P. (2009). Effects of pulsed electric field on the viscoelastic properties of potato tissue. Food Biophysics, 4(3), 229– 239. https://doi.org/10.1007/s11483-009-9120-0
79. Rahaman, A., Siddeeg, A., Manzoor, M. F., Zeng, X. A., Ali, S., Baloch, Z., Li, J., & Wen, Q. H. (2019). Impact of pulsed electric field treatment on drying kinetics, mass transfer, colour parameters and microstructure of plum. Journal of Food Science and Technology, 56(5), 2670– 2678. https://doi.org/10.1007/s13197-019-03755-0
80. Raso, J., Frey, W., Ferrari, G., Pataro, G., Knorr, D., Teissie, J., & Miklavčič, D. (2016). Recommendations guidelines on the key information to be reported in studies of application of ИЭП technology in food and biotechnological processes. Innovative Food Science and Emerging Technologies, 37, 312– 321. https://doi.org/10.1016/j.ifset.2016.08.003
81. Rybak, K., Samborska, K., Jedlinska, A., Parniakov, O., Nowacka, M., Witrowa-Rajchert, D., & Wiktor, A. (2020). The impact of pulsed electric field pretreatment of bell pepper on the selected properties of spray dried juice. Innovative Food Science and Emerging Technologies, 65(June), 102446. https://doi.org/10.1016/j.ifset.2020.102446
82. Sack, M., Eing, C., Berghöfer, T., Buth, L., Stängle, R., Frey, W., & Bluhm, H. (2008). Electroporation-assisted dewatering as an alternative method for drying plants. IEEE Transactions on Plasma Science, 36(5 PART 3), 2577– 2585. https://doi.org/10.1109/TPS.2008.2002440
83. Salehi, F. (2020). Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: A review. International Journal of Food Properties, 23(1), 1036– 1050. https://doi.org/10.1080/10942912.2020.1775250
84. Saletnik, B., Zaguła, G., Aneta, S., Marcin, B., Ewelina, S., & Czesław, P. (2022). Effect of magnetic and electrical fields on yield, shelf life and quality of fruits. Applied Sciences, 12, 1– 22. https://doi.org/10.3390/app12063183
85. Sampedro, F., McAloon, A., Yee, W., Fan, X., Zhang, H. Q., & Geveke, D. J. (2013). Cost analysis of commercial pasteurization of orange juice by pulsed electric fields. Innovative Food Science and Emerging Technologies, 17, 72– 78.
86. Sánchez-Vega, R., Elez-Martínez, P., & Martín-Belloso, O. (2014). Effects of high-intensity pulsed electric fields processing parameters on the chlorophyll content and its degradation compounds in broccoli juice. Food and Bioprocess Technology, 7(4), 1137– 1148. https://doi.org/10.1007/s11947-013-1152-2
87. Schottroff, F., Johnson, K., Johnson, N. B., Bédard, M. F., & Jaeger, H. (2020). Challenges and limitations for the decontamination of high solids protein solutions at neutral pH using pulsed electric fields. Journal of Food Engineering, 268(August 2019), 109737. https://doi.org/10.1016/j.jfoodeng.2019.109737
88. Shorstkii, I., Sosnin, M., Smetana, S., Toepfl, S., Parniakov, O., & Wiktor, A. (2022). Correlation of the cell disintegration index with Luikov's heat and mass transfer parameters for drying of pulsed electric field (ИЭП) pretreated plant materials. Journal of Food Engineering, 316(June 2021), 110822. https://doi.org/10.1016/j.jfoodeng.2021.110822
89. Singh, M., Patra, S., & Rajesh, K. S. (2021). Common techniques and methods for screening of natural products for developing of anticancer drugs. In A. K. Srivastava, V. K. Kannaujiya, R. K. Singh, & D. Singh (Eds.), Evolutionary diversity as a source for anticancer molecules (pp. 323– 353). Academic Press. https://doi.org/10.1016/B978-0-12-821710-8.00015-1
90. Sulaimana, A. S., Chang, C.-K., Hou, C.-Y., Yudhistira, B., Punthi, F., Lung, C.-T., Cheng, K.-C., Santoso, S. P., & Hsieh, C.-W. (2021). Effect of oxidative stress on physicochemical quality of Taiwanese seagrape (Caulerpa lentillifera) with the application of alternating current electric field (ACEF) during post-harvest storage. Processes, 9(6), 1011. https://doi.org/10.3390/pr9061011
91. Sun, J., Bai, W., Zhang, Y., Liao, X., & Hu, X. (2011). Effects of electrode materials on the degradation, spectral characteristics, visual colour, and antioxidant capacity of cyanidin-3-glucoside and cyanidin-3-sophoroside during pulsed electric field (ИЭП) treatment. Food Chemistry, 128(3), 742– 747. https://doi.org/10.1016/j.foodchem.2011.03.099
92. Sun, T., & Ling, F. (2021). Optimization method of microwave drying process parameters for rice. Quality Assurance and Safety of Crops & Foods, 13(3), 10– 20. https://doi.org/10.15586/qas.v13i3.917
93. Tamer, C., Isci, A., Kutlu, N., Sakiyan, O., Sahin, S., & Sumnu, G. (2016). Effect of drying on porous characteristics of orange peel. International Journal of Food Engineering, 12(9), 921– 928. https://doi.org/10.1515/ijfe-2016-0075
94. Tanino, T., Hirosawa, M., Moteki, R., Matsui, M., & Ohshima, T. (2020). Engineering of pulsed electric field treatment using carbon materials as electrode and application to pasteurization of sake. Journal of Electrostatics, 104(November 2019), 103424. https://doi.org/10.1016/j.elstat.2020.103424
95. Telfser, A., & Galindo, F. G. (2019). Effect of reversible permeabilization in combination with different drying methods on the structure and sensorial quality of dried basil (Ocimum basilicum L.) leaves. LWT - Food Science and Technology, 99(September 2018), 148– 155. https://doi.org/10.1016/j.lwt.2018.09.062
96. Terefe, N. S., Buckow, R., & Versteeg, C. (2015). Quality-related enzymes in plant-based products: Effects of novel food processing technologies part 2: Pulsed electric field processing. Critical Reviews in Food Science and Nutrition, 55(1), 1– 15. https://doi.org/10.1080/10408398.2012.701253
97. Timmermans, R. A. H., Mastwijk, H. C., Berendsen, L. B. J. M., Nederhoff, A. L., Matser, A. M., Van Boekel, M. A. J. S., & Nierop Groot, M. N. (2019). Moderate intensity Pulsed Electric Fields (ИЭП) as alternative mild preservation technology for fruit juice. International Journal of Food Microbiology, 298(May 2018), 63– 73. https://doi.org/10.1016/j.ijfoodmicro.2019.02.015
98. Toepfl, S., & Knorr, D. (2006). Pulsed electric fields as a pretreatment technique in drying processes. Stewart Postharvest Review, 4(3), 1– 6. https://doi.org/10.2212/spr.2006.4.3
99. Toepfl, S., Siemer, C., Saldaña-Navarro, G., & Heinz, V. (2014). Overview of pulsed electric fields processing for food. In D.-W. Sun (Ed.), Emerging technologies for food processing ( 2nd ed., pp. 93– 114). Academic Press. https://doi.org/10.1016/b978-0-12-411479-1.00006-1
100. Tomasi, J. D. C., De Lima, G. G., Wendling, I., Helm, C. V., Hansel, F. A., De Godoy, R. C. B., Grunennvaldt, R. L., De Melo, T. O., Tomazzoli, M. M., & Deschamps, C. (2021). Effects of different drying methods on the chemical, nutritional and colour of yerba mate (Ilex paraguariensis) leaves. International Journal of Food Engineering, 17(7), 551– 560. https://doi.org/10.1515/ijfe-2020-0312
101. Tylewicz, U., Mannozzi, C., Castagnini, J. M., Genovese, J., Romani, S., Rocculi, P., & Rosa, M. D. (2022). Application of ИЭП- and OD-assisted drying for kiwifruit waste valorisation. Innovative Food Science & Emerging Technologies, 77(February), 102952. https://doi.org/10.1016/j.ifset.2022.102952
102. Tylewicz, U., Tappi, S., Mannozzi, C., Romani, S., Dellarosa, N., Laghi, L., Ragni, L., Rocculi, P., & Dalla Rosa, M. (2017). Effect of pulsed electric field (ИЭП) pre-treatment coupled with osmotic dehydration on physico-chemical characteristics of organic strawberries. Journal of Food Engineering, 213, 2– 9. https://doi.org/10.1016/j.jfoodeng.2017.04.028
103. Vaessen, E. M. J., Timmermans, R. A. H., Tempelaars, M. H., Schutyser, M. A. I., & den Besten, H. M. W. (2019). Reversibility of membrane permeabilization upon pulsed electric field treatment in Lactobacillus plantarum WCFS1. Scientific Reports, 9(1), 1– 11. https://doi.org/10.1038/s41598-019-56299-w
104. van Wyk, S., Silva, F. V. M., & Farid, M. M. (2019). Pulsed electric field treatment of red wine: Inactivation of Brettanomyces and potential hazard caused by metal ion dissolution. Innovative Food Science and Emerging Technologies, 52(June 2018), 57– 65. https://doi.org/10.1016/j.ifset.2018.11.001
105. Voda, A., Homan, N., Witek, M., Duijster, A., van Dalen, G., van der Sman, R., Nijsse, J., van Vliet, L., Van As, H., & van Duynhoven, J. (2012). The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Research International, 49(2), 687– 693. https://doi.org/10.1016/j.foodres.2012.08.019
106. Vorobiev, E., & Lebovka, N. (2019). Pulsed electric field in green processing and preservation of food products. In F. Chemat & E. Vorobiev (Eds.), Green food processing techniques (pp. 403– 430). Elsevier. https://doi.org/10.1016/b978-0-12-815353-6.00015-x
107. Waghmare, R. (2021). Refractance window drying: A cohort review on quality characteristics. Trends in Food Science and Technology, 110(50), 652– 662. https://doi.org/10.1016/j.tifs.2021.02.030
108. Wang, Q., Li, Y., Sun, D. W., & Zhu, Z. (2018). Enhancing food processing by pulsed and high voltage electric fields: Principles and applications. Critical Reviews in Food Science and Nutrition, 58(13), 2285– 2298. https://doi.org/10.1080/10408398.2018.1434609
109. Wiktor, A., Dadan, M., Nowacka, M., Rybak, K., & Witrowa-Rajchert, D. (2019). The impact of combination of pulsed electric field and ultrasound treatment on air drying kinetics and quality of carrot tissue. LWT - Food Science and Technology, 110(April), 71– 79. https://doi.org/10.1016/j.lwt.2019.04.060
110. Wiktor, A., Gondek, E., Jakubczyk, E., Dadan, M., Nowacka, M., Rybak, K., & Witrowa-Rajchert, D. (2018). Acoustic and mechanical properties of carrot tissue treated by pulsed electric field, ultrasound and combination of both. Journal of Food Engineering, 238, 12– 21. https://doi.org/10.1016/j.jfoodeng.2018.06.001
111. Wiktor, A., Iwaniuk, M., Śledź, M., Nowacka, M., Chudoba, T., & Witrowa-Rajchert, D. (2013). Drying kinetics of apple tissue treated by pulsed electric field. Drying Technology, 31(1), 112– 119. https://doi.org/10.1080/07373937.2012.724128
112. Wiktor, A., Lammerskitten, A., Barba, F. J., Michalski, M., Toepfl, S., & Parniakov, O. (2021). Drying processes assisted by ИЭП for plant-based materials. In K. Knoerzer & K. Muthukumarappan (Eds.), Innovative food processing technologies: A comprehensive review (pp. 272– 275). Elsevier. https://doi.org/10.1016/B978-0-12-815781-7.00001-9
113. Wiktor, A., Nowacka, M., Dadan, M., Rybak, K., Lojkowski, W., Chudoba, T., & Witrowa-Rajchert, D. (2016). The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Drying Technology, 34(11), 1286– 1296. https://doi.org/10.1080/07373937.2015.1105813
114. Wiktor, A., Sledz, M., Nowacka, M., Rybak, K., Chudoba, T., Lojkowski, W., & Witrowa-Rajchert, D. (2015). The impact of pulsed electric field treatment on selected bioactive compound content and color of plant tissue. Innovative Food Science and Emerging Technologies, 30, 69– 78. https://doi.org/10.1016/j.ifset.2015.04.004
115. Wiktor, A., & Witrowa-Rajchert, D. (2016). Pulsed electric fields as pretreatment for subsequent food process operations. In D. Miklavcic (Ed.), Handbook of electroporation (pp. 1– 16). Springer. https://doi.org/10.1007/978-3-319-26779-1_178-1
116. Won, Y. C., Min, S. C., & Lee, D. U. (2015). Accelerated drying and improved color properties of red pepper by pretreatment of pulsed electric fields. Drying Technology, 33(8), 926– 932. https://doi.org/10.1080/07373937.2014.999371
117. Wu, Y., & Zhang, D. (2019). Pulsed electric field enhanced freeze-drying of apple tissue. Czech Journal of Food Sciences, 37(6), 432– 438. https://doi.org/10.17221/230/2018-CJFS
118. Yamakage, K., Yamada, T., Takahashi, K., Takaki, K., Komuro, M., Sasaki, K., Aoki, H., Kamagata, J., Koide, S., & Orikasa, T. (2021). Impact of pre-treatment with pulsed electric field on drying rate and changes in spinach quality during hot air drying. Innovative Food Science and Emerging Technologies, 68(August 2020), 102615. https://doi.org/10.1016/j.ifset.2021.102615
119. Yu, Y., Jin, T. Z., & Xiao, G. (2017). Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries. Journal of Food Processing and Preservation, 41(6), 1– 9. https://doi.org/10.1111/jfpp.13303
120. Zderic, A., & Zondervan, E. (2016). Polyphenol extraction from fresh tea leaves by pulsed electric field: A study of mechanisms. Chemical Engineering Research and Design, 109, 586– 592. https://doi.org/10.1016/j.cherd.2016.03.010
121. Zderic, A., Zondervan, E., & Meuldijk, J. (2013). Breakage of cellular tissue by pulsed electric field: Extraction of polyphenols from fresh tea leaves. Chemical Engineering Transactions, 32, 1795– 1800. https://doi.org/10.3303/CET1332300
122. Zhang, C., Yang, Y. H., Zhao, X. D., Zhang, L., Li, Q., Wu, C., Ding, X., & Qian, J. Y. (2021). Assessment of impact of pulsed electric field on functional, rheological and structural properties of vital wheat gluten. LWT - Food Science and Technology, 147(April), 111536. https://doi.org/10.1016/j.lwt.2021.111536
123. Zhang, S., Sun, L., Ju, H., Bao, Z., Zeng, X., & Lin, S. (2021). Research advances and application of pulsed electric field on proteins and peptides in food. Food Research International, 139(1), 109914. https://doi.org/10.1016/j.foodres.2020.109914
124. Zhang, Z. H., Wang, L. H., Zeng, X. A., Han, Z., & Brennan, C. S. (2019). Non-thermal technologies and its current and future application in the food industry: A review. International Journal of Food Science and Technology, 54(1), 1– 13. https://doi.org/10.1111/ijfs.13903
125. Zhang, Z. H., Zeng, X. A., Brennan, C. S., Brennan, M., Han, Z., & Xiong, X. Y. (2015). Effects of pulsed electric fields (ИЭП) on vitamin C and its antioxidant properties. International Journal of Molecular Sciences, 16(10), 24159– 24173. https://doi.org/10.3390/ijms161024159
126. Zhang, Z., Zhang, B., Yang, R., & Zhao, W. (2020). Recent developments in the preservation of raw fresh food by pulsed electric field. Food Reviews International, 00(00), 1– 19. https://doi.org/10.1080/87559129.2020.1860083
127. Zhao, W., Yang, R., & Zhang, H. Q. (2012). Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends in Food Science and Technology, 27(2), 83– 96. https://doi.org/10.1016/j.tifs.2012.05.007
Дополнительные файлы
![]() |
1. Неозаглавлен | |
Тема | ||
Тип | Прочее | |
Скачать
(B)
|
Метаданные ▾ |
Рецензия
Для цитирования:
Бурак Л.Ч., Сапач А.Н. Влияние предварительной обработки импульсным электрическим полем на процесс сушки: обзор предметного поля. Хранение и переработка сельхозсырья. 2023;(2):44-71. https://doi.org/10.36107/spfp.2023.418
For citation:
Burak L.Ch., Sapach A.N. Influence of Pre-Treatment by a Pulsed Electric Field on the Drying Process: Scoping Review. Storage and Processing of Farm Products. 2023;(2):44-71. (In Russ.) https://doi.org/10.36107/spfp.2023.418