Preview

Storage and Processing of Farm Products

Advanced search

Influence of Pre-Treatment by a Pulsed Electric Field on the Drying Process: Scoping Review

https://doi.org/10.36107/spfp.2023.418

Abstract

Introduction: The main influence on the quality of dried products, including physicochemical, microbiological, organoleptic indicators and nutritional value, is exerted by the drying process used. Recently, as a method of pre treatment of plant materials before drying, the method of exposure to a pulsed electric field is used. The purpose of this article is to critically review the results of published scientific studies on the use of a pulsed electric field to treat foodstuffs prior to the drying process. The assessment of the action of a pulsed electric field was analyzed on the basis of the obtained physical and organoleptic indicators of dried products and drying kinetics.


Materials and Methods: The search for foreign scientific literature in English on the influence of pre-treatment of raw materials by a pulsed electric field on the drying process and the quality of finished dried products was carried out in the bibliographic databases «Scopus» and «Web of Science». The period 2006–2023 was adopted as the time frame for the review of scientific publications. When performing the work, scientific methods were used to search and screen scientific literature, extract data, analyze them, systematize and generalize. When selecting publications for review, priority was given to highly cited sources (citation index above 3). The results of the analysis were presented in the form of tables and charts for data visualization. To review the subject field of the study, an algorithm was used in accordance with the PRIZMA protocol and a scheme for conducting the study was drawn up. Materials for the study were 126 articles.


Results: A review ofthe scientific literature showed that drying with the use of pre-treatment with a pulsed electric field contributes to the preservation of the physico-chemical properties of dried products, their colour and contained biologically active compounds, and also improves the drying kinetics. Unlike traditional technologies, drying using a pulsed electric field provides selective disintegration of cells without adversely affecting the quality of the product. Pre-treatment with a pulsed electric field causes inactivation of microorganisms and oxidative enzymes, which contributes to the maximum preservation of the quality indicators of the finished product after drying. Fruits and vegetables pre-treated with pulsed electric have improved quality after drying compared to those that have not been processed. Finished products treated with a pulsed electric field before drying had a more saturated color and higher antioxidant activity, and the drying process time for such products is much shorter.


Conclusions: Processing with a pulsed electric field is one of the innovative technologies that can be used to improve the quality of dried products and optimize traditional drying methods. Pre-treatment with a pulsed electric field before drying helps to reduce the drying time, reduce energy consumption and preserve biologically active compounds in the finished product. The materials of this article can be used in further scientific research and industrial use of this processing technology.

About the Authors

Leonid Ch. Burak
BELROSAKVA llC
Belarus


Aleksander N. Sapach
BELROSAKVA llC
Belarus


References

1. Al-Sayed, L., Boy, V., Madieta, E., Mehinagic, E., & Lanoisellé, J.-L. (2018). Pulsed electric fields (ИЭП) as pre-treatment for freeze-drying of plant tissues. IDS’2018—21st international drying symposium València, Spain, 11–14 September 2018. https://doi.org/10.4995/ids2018.2018.7484

2. Alam, M. R., Lyng, J. G., Frontuto, D., Marra, F., & Cinquanta, L. (2018). Effect of pulsed electric field pretreatment on drying kinetics, color, and texture of parsnip and carrot. Journal of Food Science, 83(8), 2159– 2166. https://doi.org/10.1111/1750-3841.14216

3. Arshad, R. N., Abdul-Malek, Z., Munir, A., Buntat, Z., Ahmad, M. H., Jusoh, Y. M. M., Bekhit, A. E. D., Roobab, U., Manzoor, M. F., & Aadil, R. M. (2020). Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in Food Science and Technology, 104, 1– 13. https://doi.org/10.1016/j.tifs.2020.07.008

4. Arshad, R. N., Abdul-Malek, Z., Roobab, U., Munir, M. A., Naderipour, A., Qureshi, M. I., El-Din Bekhit, A., Liu, Z. W., & Aadil, R. M. (2021). Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science and Technology, 111, 43– 54. https://doi.org/10.1016/j.tifs.2021.02.041

5. Asavasanti, S., Ristenpart, W., Stroeve, P., & Barrett, D. M. (2011). Permeabilization of plant tissues by monopolar pulsed electric fields: Effect of frequency. Journal of Food Science, 76(1), E98– E111. https://doi.org/10.1111/j.1750-3841.2010.01940.x

6. Barba, F. J., Parniakov, O., Pereira, S. A., Wiktor, A., Grimi, N., Boussetta, N., Saraiva, J. A., Raso, J., Martin-Belloso, O., Witrowa-Rajchert, D., Lebovka, N., & Vorobiev, E. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77, 773– 798. https://doi.org/10.1016/j.foodres.2015.09.015

7. Bobinaitė, R., Pataro, G., Lamanauskas, N., Šatkauskas, S., Viškelis, P., & Ferrari, G. (2015). Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. Journal of Food Science and Technology, 52(9), 5898– 5905. https://doi.org/10.1007/s13197-014-1668-0

8. Bozkir, H. (2020). Effects of hot air, vacuum infrared, and vacuum microwave dryers on the drying kinetics and quality characteristics of orange slices. Journal of Food Process Engineering, 43(10), 1– 12. https://doi.org/10.1111/jfpe.13485

9. Buchmann, L., & Mathys, A. (2019). Perspective on pulsed electric field treatment in the bio-based industry. Frontiers in Bioengineering and Biotechnology, 7, 1– 7. https://doi.org/10.3389/fbioe.2019.00265

10. Chauhan, O. P., Sayanfar, S., & Toepfl, S. (2018). Effect of pulsed electric field on texture and drying time of apple slices. Journal of Food Science and Technology, 55(6), 2251– 2258. https://doi.org/10.1007/s13197-018-3142-x

11. Chen, B., Chang, C., Cheng, K., Hou, C., Lin, J., Chen, M., Permatasari, S., Chen, C., & Hsieh, C. (2022). Using the response surface methodology to establish the optimal conditions for preserving bananas (Musa acuminata) in a pulsed electric field and to decrease browning induced by storage at a low temperature. Food Packaging and Shelf Life, 31(July 2021), 100804. https://doi.org/10.1016/j.fpsl.2021.100804

12. Chen, B. R., Wang, Z. M., Lin, J. W., Wen, Q. H., Xu, F. Y., Li, J., Wang, R., & Zeng, X. A. (2022). Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field. Food Hydrocolloids, 129(March), 107655. https://doi.org/10.1016/j.foodhyd.2022.107655

13. Dalvi-Isfahan, M., Hamdami, N., Le-Bail, A., & Xanthakis, E. (2016). The principles of high voltage electric field and its application in food processing: A review. Food Research International, 89(Pt. 1), 48– 62. https://doi.org/10.1016/j.foodres.2016.09.002

14. Dellarosa, N., Tappi, S., Ragni, L., Laghi, L., Rocculi, P., & Dalla Rosa, M. (2016). Metabolic response of fresh-cut apples induced by pulsed electric fields. Innovative Food Science and Emerging Technologies, 38, 356– 364. https://doi.org/10.1016/j.ifset.2016.06.016

15. Demir, E., Dymek, K., & Galindo, F. G. (2018). Technology allowing baby spinach leaves to acquire freezing tolerance. Food and Bioprocess Technology, 11(4), 809– 817. https://doi.org/10.1007/s11947-017-2044-7

16. Devkota, L., He, L., Bittencourt, C., Midgley, J., & Haritos, V. S. (2022). Thermal and pulsed electric field (ИЭП) assisted hydration of common beans. LWT - Food Science and Technology, 158, 113163. https://doi.org/10.1016/j.lwt.2022.113163

17. Dhua, S., Kumar, K., Sharanagat, V. S., & Nema, P. K. (2022). Bioactive compounds and its optimization from food waste: Review on novel extraction techniques. Nutrition and Food Science, . https://doi.org/10.1108/NFS-12-2021-0373

18. El Kantar, S., Boussetta, N., Lebovka, N., Foucart, F., Rajha, H. N., Maroun, R. G., Louka, N., & Vorobiev, E. (2018). Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction. Innovative Food Science and Emerging Technologies, 46(October 2017), 153– 161. https://doi.org/10.1016/j.ifset.2017.09.024

19. Fauster, T., Schlossnikl, D., Rath, F., Ostermeier, R., Teufel, F., Toepfl, S., & Jaeger, H. (2018). Impact of pulsed electric field (ИЭП) pretreatment on process performance of industrial French fries production. Journal of Food Engineering, 235, 16– 22. https://doi.org/10.1016/j.jfoodeng.2018.04.023

20. Ferreira-Holderbaum, D., Kon, T., Kudo, T., & Pedro Guerra, M. (2010). Enzymatic browning, polyphenol oxidase activity, and polyphenols in four apple cultivars: Dynamics during fruit development. HortScience, 45(8), 1150– 1154.

21. Gamboa-Santos, J., Megías-Pérez, R., Soria, A. C., Olano, A., Montilla, A., & Villamiel, M. (2014). Impact of processing conditions on the kinetic of vitamin C degradation and 2-furoylmethyl amino acid formation in dried strawberries. Food Chemistry, 153, 164– 170. https://doi.org/10.1016/j.foodchem.2013.12.004

22. Gavahian, M., Chu, Y. H., & Sastry, S. (2018). Extraction from food and natural products by moderate electric field: Mechanisms, benefits, and potential industrial applications. Comprehensive Reviews in Food Science and Food Safety, 17(4), 1040– 1052. https://doi.org/10.1111/1541-4337.12362

23. Gavahian, M., & Farahnaky, A. (2018). Ohmic-assisted hydrodistillation technology: A review. Trends in Food Science and Technology, 72(September 2017), 153– 161. https://doi.org/10.1016/j.tifs.2017.12.014

24. Gavahian, M., Pallares, N., Al Khawli, F., Ferrer, E., & Barba, F. J. (2020). Recent advances in the application of innovative food processing technologies for mycotoxins and pesticide reduction in foods. Trends in Food Science and Technology, 106(October), 209– 218. https://doi.org/10.1016/j.tifs.2020.09.018

25. Gavahian, M., & Tiwari, B. K. (2020). Moderate electric fields and ohmic heating as promising fermentation tools. Innovative Food Science and Emerging Technologies, 64(November 2019), 102422. https://doi.org/10.1016/j.ifset.2020.102422

26. Ghasemi, J., Moradi, M., Karparvarfard, S. H., Golmakani, M. T., & Khaneghah, A. M. (2021). Thin layer drying kinetics of lemon verbena leaves: A quality assessment and mathematical modeling. Quality Assurance and Safety of Crops & Foods, 13(1), 59– 72. https://doi.org/10.15586/qas.v13i1.835

27. Golberg, A., Sack, M., Teissie, J., Pataro, G., Pliquett, U., Saulis, G., Stefan, T., Miklavcic, D., Vorobiev, E., & Frey, W. (2016). Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 9(1), 1– 22. https://doi.org/10.1186/s13068-016-0508-z

28. Gómez, B., Munekata, P. E. S., Gavahian, M., Barba, F. J., Martí-Quijal, F. J., Bolumar, T., Campagnol, P. C. B., Tomasevic, I., & Lorenzo, J. M. (2019). Application of pulsed electric fields in meat and fish processing industries: An overview. Food Research International, 123(April), 95– 105. https://doi.org/10.1016/j.foodres.2019.04.047

29. Guionet, A., Fujiwara, T., Sato, H., Takahashi, K., Takaki, K., Matsui, M., Tanino, T., & Ohshima, T. (2021). Pulsed electric fields act on tryptophan to inactivate α-amylase. Journal of Electrostatics, 112(May), 103597. https://doi.org/10.1016/j.elstat.2021.103597

30. Guionet, A., David, F., Zaepffel, C., Coustets, M., Helmi, K., Cheype, C., Packan, D., Garnier, J. P., Blanckaert, V., & Teissié, J. (2015). E. coli electroeradication on a closed loop circuit by using milli-, micro- and nanosecond pulsed electric fields: Comparison between energy costs. Bioelectrochemistry, 103, 65– 73. https://doi.org/10.1016/j.bioelechem.2014.08.021

31. Han, Z., Cai, M. J., Cheng, J. H., & Sun, D. W. (2018). Effects of electric fields and electromagnetic wave on food protein structure and functionality: A review. Trends in Food Science and Technology, 75(February), 1– 9. https://doi.org/10.1016/j.tifs.2018.02.017

32. Heinz, V., Toepfl, S. (2022). Pulsed electric fields industrial equipment design. In J. Raso, V. Heinz, I. Alvarez, & S. Toepfl (Eds.), Pulsed electric fields technology for the food industry. Food engineering series (pp. 489– 504). Springer. https://doi.org/10.1007/978-3-030-70586-2_17

33. Hill, K., Ostermeier, R., Töpfl, S., Heinz, V. (2022). Pulsed electric fields in the potato industry. In J. Raso, V. Heinz, I. Alvarez, & S. Toepfl (Eds.), Pulsed electric fields technology for the food industry. Food engineering series (pp. 325– 335). Springer. https://doi.org/10.1007/978-3-030-70586-2_9

34. Huang, D., Men, K., Li, D., Wen, T., Gong, Z., Sunden, B., & Wu, Z. (2020). Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry, 63, 104950. https://doi.org/10.1016/j.ultsonch.2019.104950

35. Iaccheri, E., Castagnini, J. M., Rosa, D. M., & Rocculi, P. (2021). New insights into the glass transition of dried fruits and vegetables and the effect of pulsed electric field treatment. Innovative Food Science and Emerging Technologies, 67(November), 102566. https://doi.org/10.1016/j.ifset.2020.102566

36. Iaccheri, E., Castagnini, J. M., Tylewicz, U., & Rocculi, P. (2021). Modelling the mechanical properties and sorption behaviour of pulsed electric fields (ИЭП) treated carrots and potatoes after air drying for food chain management. Biosystems Engineering, . https://doi.org/10.1016/j.biosystemseng.2021.09.011

37. Jacobo-Velázquez, D. A., Cuéllar-Villarreal, M. del R., Welti-Chanes, J., Cisneros-Zevallos, L., Ramos-Parra, P. A., & Hernández-Brenes, C. (2017). Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends in Food Science and Technology, 60, 80– 87. https://doi.org/10.1016/j.tifs.2016.10.021

38. Jacobo-Velázquez, D. A., Martínez-Hernández, G. B., Del C Rodríguez, S., Cao, C. M., & Cisneros-Zevallos, L. (2011). Plants as biofactories: Physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. Journal of Agricultural and Food Chemistry, 59(12), 6583– 6593. https://doi.org/10.1021/jf2006529

39. Jin, T. Z., Yu, Y., & Gurtler, J. B. (2017). Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT - Food Science and Technology, 77, 517– 524. https://doi.org/10.1016/j.lwt.2016.12.009

40. Kandušer, M., Belič, A., Čorović, S., & Škrjanc, I. (2017). Modular Serial Flow Through device for pulsed electric field treatment of the liquid samples. Scientific Reports, 7(1), 1– 12. https://doi.org/10.1038/s41598-017-08620-8

41. Kempkes, M., & Munderville, M. (2018). Pulsed electric fields (ИЭП) processing of fruit and vegetables. 2017 IEEE 21st International Conference on Pulsed Power (PPC). https://doi.org/10.1109/PPC.2017.8291186

42. Kumar, Y., Bashir, A. A., & NIndore, R. K. V., R, K. S. (2021). Pulsed electric field. In C. M. Galanakis (Ed.), Sustainable food processing and engineering challenges (pp. 137– 179). Academic Press. https://doi.org/10.1016/B978-0-12-822714-5.00005-X

43. Kwao, S., Al-Hamimi, S., Damas, M. E. V., Rasmusson, A. G., & Gómez Galindo, F. (2016). Effect of guard cells electroporation on drying kinetics and aroma compounds of Genovese basil (Ocimum basilicum L.) leaves. Innovative Food Science and Emerging Technologies, 38, 15– 23. https://doi.org/10.1016/j.ifset.2016.09.011

44. Lamanauskas, N., Šatkauskas, S., Bobinaite, R., & Viškelis, P. (2015). Pulsed electric field (ИЭП) impact on Actinidia kolomikta drying efficiency. Journal of Food Process Engineering, 38(3), 243– 249. https://doi.org/10.1111/jfpe.12161

45. Lammerskitten, A., Mykhailyk, V., Wiktor, A., Toepfl, S., Nowacka, M., Bialik, M., Czyżewski, J., Witrowa-Rajchert, D., & Parniakov, O. (2019). Impact of pulsed electric fields on physical properties of freeze-dried apple tissue. Innovative Food Science and Emerging Technologies, 57(March), 102211. https://doi.org/10.1016/j.ifset.2019.102211

46. Lammerskitten, A., Shorstkii, I., Parniakov, O., Mykhailyk, V., Toepfl, S., Rybak, K., Dadan, M., Nowacka, M., & Wiktor, A. (2020). The effect of different methods of mango drying assisted by a pulsed electric field on chemical and physical properties. Journal of Food Processing and Preservation, 44(12), 1– 9. https://doi.org/10.1111/jfpp.14973

47. Lammerskitten, A., Wiktor, A., Siemer, C., Toepfl, S., Mykhailyk, V., Gondek, E., Rybak, K., Witrowa-Rajchert, D., & Parniakov, O. (2019). The effects of pulsed electric fields on the quality parameters of freeze-dried apples. Journal of Food Engineering, 252(February), 36– 43. https://doi.org/10.1016/j.jfoodeng.2019.02.006

48. Lasekan, O., Ng, S., Azeez, S., Shittu, R., Teoh, L., & Gholivand, S. (2017). Effect of pulsed electric field processing on flavor and color of liquid foods. Journal of Food Processing and Preservation, 41(3), 1– 14. https://doi.org/10.1111/jfpp.12940

49. Li, J., Shi, J., Huang, X., Wang, T., Zou, X., Li, Z., Zhang, D., Zhang, W., & Xu, Y. (2020). Effects of pulsed electric field pretreatment on frying quality of fresh-cut lotus root slices. LWT - Food Science and Technology, 132, 109873. https://doi.org/10.1016/j.lwt.2020.109873

50. Li, X., Li, J., Wang, R., Rahaman, A., Zeng, X. A., & Brennan, C. S. (2021). Combined effects of pulsed electric field and ultrasound pretreatments on mass transfer and quality of mushrooms. LWT - Food Science and Technology, 150(May), 112008. https://doi.org/10.1016/j.lwt.2021.112008

51. Liu, C., Grimi, N., Bals, O., Lebovka, N., & Vorobiev, E. (2021). Effects of pulsed electric fields and preliminary vacuum drying on freezing assisted processes in potato tissue. Food and Bioproducts Processing, 125, 126– 133. https://doi.org/10.1016/j.fbp.2020.11.002

52. Liu, C., Grimi, N., Lebovka, N., & Vorobiev, E. (2018). Effects of pulsed electric fields treatment on vacuum drying of potato tissue. LWT - Food Science and Technology, 95(April), 289– 294. https://doi.org/10.1016/j.lwt.2018.04.090

53. Liu, C., Pirozzi, A., Ferrari, G., Vorobiev, E., & Grimi, N. (2020). Effects of pulsed electric fields on vacuum drying and quality characteristics of dried carrot. Food and Bioprocess Technology, 13(1), 45– 52. https://doi.org/10.1007/s11947-019-02364-1

54. Llavata, B., García-Pérez, J. V., Simal, S., & Cárcel, J. A. (2020). Innovative pre-treatments to enhance food drying: A current review. Current Opinion in Food Science, 35, 20– 26. https://doi.org/10.1016/j.cofs.2019.12.001

55. López-Gámez, G., Elez-Martínez, P., Martín-Belloso, O., & Soliva-Fortuny, R. (2020). Pulsed electric fields affect endogenous enzyme activities, respiration and biosynthesis of phenolic compounds in carrots. Postharvest Biology and Technology, 168, 111284. https://doi.org/10.1016/j.postharvbio.2020.111284

56. López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., & Di Scala, K. (2010). Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety O'Neil. Food and Bioprocess Technology, 3(5), 772– 777. https://doi.org/10.1007/s11947-009-0306-8

57. Lung, C. T., Chang, C. K., Cheng, F. C., Hou, C. Y., Chen, M. H., Santoso, S. P., Yudhistira, B., & Hsieh, C. W. (2022). Effects of pulsed electric field-assisted thawing on the characteristics and quality of Pekin duck meat. Food Chemistry, 390(October 2021), 133137. https://doi.org/10.1016/j.foodchem.2022.133137

58. Mahnič-Kalamiza, S., Vorobiev, E., & Miklavčič, D. (2014). Electroporation in food processing and biorefinery. Journal of Membrane Biology, 247(12), 1279– 1304. https://doi.org/10.1007/s00232-014-9737-x

59. Mannozzi, C., Tylewicz, U., Tappi, S., Rosa, M. D., Rocculi, P., & Romani, S. (2020). The influence of different pre-treatments on the quality and nutritional characteristics in dried undersized yellow kiwifruit. Applied Sciences, 10(23), 1– 13. https://doi.org/10.3390/app10238432

60. Masood, H., Diao, Y., Cullen, P. J., Lee, N. A., & Trujillo, F. J. (2018). A comparative study on the performance of three treatment chamber designs for radio frequency electric field processing. Computers and Chemical Engineering, 108, 206– 216. https://doi.org/10.1016/j.compchemeng.2017.09.009

61. Meza-Jiménez, M., De, L., Pokhrel, P. R., Robles de la Torre, R. R., Barbosa-Canovas, G. V., & Hernández-Sánchez, H. (2019). Effect of pulsed electric fields on the activity of food-grade papain in a continuous system. LWT - Food Science and Technology, 109(2018), 336– 341. https://doi.org/10.1016/j.lwt.2019.04.037

62. Mohamed, M., & Eissa, A. (2012). Pulsed electric fields for food processing technology. In A. Amer Eissa (Ed.), Structure and function of food engineering (pp. 275– 306). InTech. http://cdn.intechopen.com/pdfs/38363/InTech-Pulsed_electric_fields_for_food_processing_technology.pdf

63. Morales-de la Peña, M., Welti-Chanes, J., & Martín-Belloso, O. (2019). Novel technologies to improve food safety and quality. Current Opinion in Food Science, 30, 1– 7. https://doi.org/10.1016/j.cofs.2018.10.009

64. Mousakhani-Ganjeh, A., Amiri, A., Nasrollahzadeh, F., Wiktor, A., Nilghaz, A., Pratap-Singh, A., & Mousavi Khaneghah, A. (2021). Electro-based technologies in food drying - A comprehensive review. LWT - Food Science and Technology, 145(March), 111315. https://doi.org/10.1016/j.lwt.2021.111315

65. Neri, L., Giancaterino, M., Rocchi, R., Tylewicz, U., Valbonetti, L., Faieta, M., & Pittia, P. (2021). Pulsed electric fields (ИЭП) as hot air drying pre-treatment: Effect on quality and functional properties of saffron (Crocus sativus L.). Innovative Food Science and Emerging Technologies, 67(2020), 102592. https://doi.org/10.1016/j.ifset.2020.102592

66. Nguyen, T. M. C., Gavahian, M., & Tsai, P. J. (2021). Effects of ultrasound-assisted extraction (UAE), high voltage electric field (HVEF), high pressure processing (HPP), and combined methods (HVEF+UAE and HPP+UAE) on Gac leaves extraction. LWT - Food Science and Technology, 143(February), 111131. https://doi.org/10.1016/j.lwt.2021.111131

67. Nowacka, M., Wiktor, A., Anuszewska, A., Dadan, M., Rybak, K., & Witrowa-Rajchert, D. (2019). The application of unconventional technologies as pulsed electric field, ultrasound and microwave-vacuum drying in the production of dried cranberry snacks. Ultrasonics Sonochemistry, 56, 1– 13. https://doi.org/10.1016/j.ultsonch.2019.03.023

68. Nowosad, K., Sujka, M., Pankiewicz, U., & Kowalski, R. (2021). The application of ИЭП technology in food processing and human nutrition. Journal of Food Science and Technology, 58(2), 397– 411. https://doi.org/10.1007/s13197-020-04512-4

69. Ostermeier, R., Giersemehl, P., Siemer, C., Töpfl, S., & Jäger, H. (2018). Influence of pulsed electric field (ИЭП) pre-treatment on the convective drying kinetics of onions. Journal of Food Engineering, 237(May), 110– 117. https://doi.org/10.1016/j.jfoodeng.2018.05.010

70. Ostermeier, R., Parniakov, O., Töpfl, S., & Jäger, H. (2020). Applicability of pulsed electric field (ИЭП) pre-treatment for a convective two-step drying process. Foods, 9(4), 9– 12. https://doi.org/10.3390/foods9040512

71. Pang, L., Lu, G., Cheng, J., Lu, X., Ma, D., Li, Q., Li, Z., Zheng, J., Zhang, C., & Pan, S. (2021). Physiological and biochemical characteristics of sweet potato (Ipomoea batatas (L.) Lam) roots treated by a high voltage alternating electric field during cold storage. Postharvest Biology and Technology, 180(June), 111619. https://doi.org/10.1016/j.postharvbio.2021.111619

72. Parniakov, O., Lebovka, N. I., Bals, O., & Vorobiev, E. (2015). Effect of electric field and osmotic pre-treatments on quality of apples after freezing-thawing. Innovative Food Science and Emerging Technologies, 29, 23– 30. https://doi.org/10.1016/j.ifset.2015.03.011

73. Parniakov, O., Lebovka, N. I., Van Hecke, E., & Vorobiev, E. (2014). Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus bisporus). Food and Bioprocess Technology, 7(1), 174– 183. https://doi.org/10.1007/s11947-013-1059-y

74. Parniakov, O., Bals, O., Lebovka, N., & Vorobiev, E. (2016). Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innovative Food Science and Emerging Technologies, 35, 52– 57. https://doi.org/10.1016/j.ifset.2016.04.002

75. Pataro, G., & Ferrari, G. (2020). Limitations of pulsed electric field utilization in food industry. In F. J. Barba, O. Parniakov, & A. Wiktor (Eds.), Pulsed electric fields to obtain healthier and sustainable food for tomorrow (pp. 283– 310). Academic Press. https://doi.org/10.1016/b978-0-12-816402-0.00013-6

76. Patel, S. M., Jameel, F., Sane, S. U., & Kamat, M. (2015). Lyophilization process design and development using QbD principles. In F. Jameel, S. Hershenson, M. Khan, & S. Martin-Moe (Eds.), Quality by design for biopharmaceutical drug product development (Vol. 18, pp. 303– 329). Springer Science + Business Media. https://doi.org/10.1007/978-1-4939-2316-8_14

77. Pereira, R. N., Galindo, F. G., Vicente, A. A., & Dejmek, P. (2009). Effects of pulsed electric field on the viscoelastic properties of potato tissue. Food Biophysics, 4(3), 229– 239. https://doi.org/10.1007/s11483-009-9120-0

78. Rahaman, A., Siddeeg, A., Manzoor, M. F., Zeng, X. A., Ali, S., Baloch, Z., Li, J., & Wen, Q. H. (2019). Impact of pulsed electric field treatment on drying kinetics, mass transfer, colour parameters and microstructure of plum. Journal of Food Science and Technology, 56(5), 2670– 2678. https://doi.org/10.1007/s13197-019-03755-0

79. Raso, J., Frey, W., Ferrari, G., Pataro, G., Knorr, D., Teissie, J., & Miklavčič, D. (2016). Recommendations guidelines on the key information to be reported in studies of application of ИЭП technology in food and biotechnological processes. Innovative Food Science and Emerging Technologies, 37, 312– 321. https://doi.org/10.1016/j.ifset.2016.08.003

80. Rybak, K., Samborska, K., Jedlinska, A., Parniakov, O., Nowacka, M., Witrowa-Rajchert, D., & Wiktor, A. (2020). The impact of pulsed electric field pretreatment of bell pepper on the selected properties of spray dried juice. Innovative Food Science and Emerging Technologies, 65(June), 102446. https://doi.org/10.1016/j.ifset.2020.102446

81. Sack, M., Eing, C., Berghöfer, T., Buth, L., Stängle, R., Frey, W., & Bluhm, H. (2008). Electroporation-assisted dewatering as an alternative method for drying plants. IEEE Transactions on Plasma Science, 36(5 PART 3), 2577– 2585. https://doi.org/10.1109/TPS.2008.2002440

82. Salehi, F. (2020). Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: A review. International Journal of Food Properties, 23(1), 1036– 1050. https://doi.org/10.1080/10942912.2020.1775250

83. Saletnik, B., Zaguła, G., Aneta, S., Marcin, B., Ewelina, S., & Czesław, P. (2022). Effect of magnetic and electrical fields on yield, shelf life and quality of fruits. Applied Sciences, 12, 1– 22. https://doi.org/10.3390/app12063183

84. Sampedro, F., McAloon, A., Yee, W., Fan, X., Zhang, H. Q., & Geveke, D. J. (2013). Cost analysis of commercial pasteurization of orange juice by pulsed electric fields. Innovative Food Science and Emerging Technologies, 17, 72– 78.

85. Sánchez-Vega, R., Elez-Martínez, P., & Martín-Belloso, O. (2014). Effects of high-intensity pulsed electric fields processing parameters on the chlorophyll content and its degradation compounds in broccoli juice. Food and Bioprocess Technology, 7(4), 1137– 1148. https://doi.org/10.1007/s11947-013-1152-2

86. Schottroff, F., Johnson, K., Johnson, N. B., Bédard, M. F., & Jaeger, H. (2020). Challenges and limitations for the decontamination of high solids protein solutions at neutral pH using pulsed electric fields. Journal of Food Engineering, 268(August 2019), 109737. https://doi.org/10.1016/j.jfoodeng.2019.109737

87. Shorstkii, I., Sosnin, M., Smetana, S., Toepfl, S., Parniakov, O., & Wiktor, A. (2022). Correlation of the cell disintegration index with Luikov's heat and mass transfer parameters for drying of pulsed electric field (ИЭП) pretreated plant materials. Journal of Food Engineering, 316(June 2021), 110822. https://doi.org/10.1016/j.jfoodeng.2021.110822

88. Singh, M., Patra, S., & Rajesh, K. S. (2021). Common techniques and methods for screening of natural products for developing of anticancer drugs. In A. K. Srivastava, V. K. Kannaujiya, R. K. Singh, & D. Singh (Eds.), Evolutionary diversity as a source for anticancer molecules (pp. 323– 353). Academic Press. https://doi.org/10.1016/B978-0-12-821710-8.00015-1

89. Sulaimana, A. S., Chang, C.-K., Hou, C.-Y., Yudhistira, B., Punthi, F., Lung, C.-T., Cheng, K.-C., Santoso, S. P., & Hsieh, C.-W. (2021). Effect of oxidative stress on physicochemical quality of Taiwanese seagrape (Caulerpa lentillifera) with the application of alternating current electric field (ACEF) during post-harvest storage. Processes, 9(6), 1011. https://doi.org/10.3390/pr9061011

90. Sun, J., Bai, W., Zhang, Y., Liao, X., & Hu, X. (2011). Effects of electrode materials on the degradation, spectral characteristics, visual colour, and antioxidant capacity of cyanidin-3-glucoside and cyanidin-3-sophoroside during pulsed electric field (ИЭП) treatment. Food Chemistry, 128(3), 742– 747. https://doi.org/10.1016/j.foodchem.2011.03.099

91. Sun, T., & Ling, F. (2021). Optimization method of microwave drying process parameters for rice. Quality Assurance and Safety of Crops & Foods, 13(3), 10– 20. https://doi.org/10.15586/qas.v13i3.917

92. Tamer, C., Isci, A., Kutlu, N., Sakiyan, O., Sahin, S., & Sumnu, G. (2016). Effect of drying on porous characteristics of orange peel. International Journal of Food Engineering, 12(9), 921– 928. https://doi.org/10.1515/ijfe-2016-0075

93. Tanino, T., Hirosawa, M., Moteki, R., Matsui, M., & Ohshima, T. (2020). Engineering of pulsed electric field treatment using carbon materials as electrode and application to pasteurization of sake. Journal of Electrostatics, 104(November 2019), 103424. https://doi.org/10.1016/j.elstat.2020.103424

94. Telfser, A., & Galindo, F. G. (2019). Effect of reversible permeabilization in combination with different drying methods on the structure and sensorial quality of dried basil (Ocimum basilicum L.) leaves. LWT - Food Science and Technology, 99(September 2018), 148– 155. https://doi.org/10.1016/j.lwt.2018.09.062

95. Terefe, N. S., Buckow, R., & Versteeg, C. (2015). Quality-related enzymes in plant-based products: Effects of novel food processing technologies part 2: Pulsed electric field processing. Critical Reviews in Food Science and Nutrition, 55(1), 1– 15. https://doi.org/10.1080/10408398.2012.701253

96. Timmermans, R. A. H., Mastwijk, H. C., Berendsen, L. B. J. M., Nederhoff, A. L., Matser, A. M., Van Boekel, M. A. J. S., & Nierop Groot, M. N. (2019). Moderate intensity Pulsed Electric Fields (ИЭП) as alternative mild preservation technology for fruit juice. International Journal of Food Microbiology, 298(May 2018), 63– 73. https://doi.org/10.1016/j.ijfoodmicro.2019.02.015

97. Toepfl, S., & Knorr, D. (2006). Pulsed electric fields as a pretreatment technique in drying processes. Stewart Postharvest Review, 4(3), 1– 6. https://doi.org/10.2212/spr.2006.4.3

98. Toepfl, S., Siemer, C., Saldaña-Navarro, G., & Heinz, V. (2014). Overview of pulsed electric fields processing for food. In D.-W. Sun (Ed.), Emerging technologies for food processing ( 2nd ed., pp. 93– 114). Academic Press. https://doi.org/10.1016/b978-0-12-411479-1.00006-1

99. Tomasi, J. D. C., De Lima, G. G., Wendling, I., Helm, C. V., Hansel, F. A., De Godoy, R. C. B., Grunennvaldt, R. L., De Melo, T. O., Tomazzoli, M. M., & Deschamps, C. (2021). Effects of different drying methods on the chemical, nutritional and colour of yerba mate (Ilex paraguariensis) leaves. International Journal of Food Engineering, 17(7), 551– 560. https://doi.org/10.1515/ijfe-2020-0312

100. Tylewicz, U., Mannozzi, C., Castagnini, J. M., Genovese, J., Romani, S., Rocculi, P., & Rosa, M. D. (2022). Application of ИЭП- and OD-assisted drying for kiwifruit waste valorisation. Innovative Food Science & Emerging Technologies, 77(February), 102952. https://doi.org/10.1016/j.ifset.2022.102952

101. Tylewicz, U., Tappi, S., Mannozzi, C., Romani, S., Dellarosa, N., Laghi, L., Ragni, L., Rocculi, P., & Dalla Rosa, M. (2017). Effect of pulsed electric field (ИЭП) pre-treatment coupled with osmotic dehydration on physico-chemical characteristics of organic strawberries. Journal of Food Engineering, 213, 2– 9. https://doi.org/10.1016/j.jfoodeng.2017.04.028

102. Vaessen, E. M. J., Timmermans, R. A. H., Tempelaars, M. H., Schutyser, M. A. I., & den Besten, H. M. W. (2019). Reversibility of membrane permeabilization upon pulsed electric field treatment in Lactobacillus plantarum WCFS1. Scientific Reports, 9(1), 1– 11. https://doi.org/10.1038/s41598-019-56299-w

103. van Wyk, S., Silva, F. V. M., & Farid, M. M. (2019). Pulsed electric field treatment of red wine: Inactivation of Brettanomyces and potential hazard caused by metal ion dissolution. Innovative Food Science and Emerging Technologies, 52(June 2018), 57– 65. https://doi.org/10.1016/j.ifset.2018.11.001

104. Voda, A., Homan, N., Witek, M., Duijster, A., van Dalen, G., van der Sman, R., Nijsse, J., van Vliet, L., Van As, H., & van Duynhoven, J. (2012). The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Research International, 49(2), 687– 693. https://doi.org/10.1016/j.foodres.2012.08.019

105. Vorobiev, E., & Lebovka, N. (2019). Pulsed electric field in green processing and preservation of food products. In F. Chemat & E. Vorobiev (Eds.), Green food processing techniques (pp. 403– 430). Elsevier. https://doi.org/10.1016/b978-0-12-815353-6.00015-x

106. Waghmare, R. (2021). Refractance window drying: A cohort review on quality characteristics. Trends in Food Science and Technology, 110(50), 652– 662. https://doi.org/10.1016/j.tifs.2021.02.030

107. Wang, Q., Li, Y., Sun, D. W., & Zhu, Z. (2018). Enhancing food processing by pulsed and high voltage electric fields: Principles and applications. Critical Reviews in Food Science and Nutrition, 58(13), 2285– 2298. https://doi.org/10.1080/10408398.2018.1434609

108. Wiktor, A., Dadan, M., Nowacka, M., Rybak, K., & Witrowa-Rajchert, D. (2019). The impact of combination of pulsed electric field and ultrasound treatment on air drying kinetics and quality of carrot tissue. LWT - Food Science and Technology, 110(April), 71– 79. https://doi.org/10.1016/j.lwt.2019.04.060

109. Wiktor, A., Gondek, E., Jakubczyk, E., Dadan, M., Nowacka, M., Rybak, K., & Witrowa-Rajchert, D. (2018). Acoustic and mechanical properties of carrot tissue treated by pulsed electric field, ultrasound and combination of both. Journal of Food Engineering, 238, 12– 21. https://doi.org/10.1016/j.jfoodeng.2018.06.001

110. Wiktor, A., Iwaniuk, M., Śledź, M., Nowacka, M., Chudoba, T., & Witrowa-Rajchert, D. (2013). Drying kinetics of apple tissue treated by pulsed electric field. Drying Technology, 31(1), 112– 119. https://doi.org/10.1080/07373937.2012.724128

111. Wiktor, A., Lammerskitten, A., Barba, F. J., Michalski, M., Toepfl, S., & Parniakov, O. (2021). Drying processes assisted by ИЭП for plant-based materials. In K. Knoerzer & K. Muthukumarappan (Eds.), Innovative food processing technologies: A comprehensive review (pp. 272– 275). Elsevier. https://doi.org/10.1016/B978-0-12-815781-7.00001-9

112. Wiktor, A., Nowacka, M., Dadan, M., Rybak, K., Lojkowski, W., Chudoba, T., & Witrowa-Rajchert, D. (2016). The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Drying Technology, 34(11), 1286– 1296. https://doi.org/10.1080/07373937.2015.1105813

113. Wiktor, A., Sledz, M., Nowacka, M., Rybak, K., Chudoba, T., Lojkowski, W., & Witrowa-Rajchert, D. (2015). The impact of pulsed electric field treatment on selected bioactive compound content and color of plant tissue. Innovative Food Science and Emerging Technologies, 30, 69– 78. https://doi.org/10.1016/j.ifset.2015.04.004

114. Wiktor, A., & Witrowa-Rajchert, D. (2016). Pulsed electric fields as pretreatment for subsequent food process operations. In D. Miklavcic (Ed.), Handbook of electroporation (pp. 1– 16). Springer. https://doi.org/10.1007/978-3-319-26779-1_178-1

115. Won, Y. C., Min, S. C., & Lee, D. U. (2015). Accelerated drying and improved color properties of red pepper by pretreatment of pulsed electric fields. Drying Technology, 33(8), 926– 932. https://doi.org/10.1080/07373937.2014.999371

116. Wu, Y., & Zhang, D. (2019). Pulsed electric field enhanced freeze-drying of apple tissue. Czech Journal of Food Sciences, 37(6), 432– 438. https://doi.org/10.17221/230/2018-CJFS

117. Yamakage, K., Yamada, T., Takahashi, K., Takaki, K., Komuro, M., Sasaki, K., Aoki, H., Kamagata, J., Koide, S., & Orikasa, T. (2021). Impact of pre-treatment with pulsed electric field on drying rate and changes in spinach quality during hot air drying. Innovative Food Science and Emerging Technologies, 68(August 2020), 102615. https://doi.org/10.1016/j.ifset.2021.102615

118. Yu, Y., Jin, T. Z., & Xiao, G. (2017). Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries. Journal of Food Processing and Preservation, 41(6), 1– 9. https://doi.org/10.1111/jfpp.13303

119. Zderic, A., & Zondervan, E. (2016). Polyphenol extraction from fresh tea leaves by pulsed electric field: A study of mechanisms. Chemical Engineering Research and Design, 109, 586– 592. https://doi.org/10.1016/j.cherd.2016.03.010

120. Zderic, A., Zondervan, E., & Meuldijk, J. (2013). Breakage of cellular tissue by pulsed electric field: Extraction of polyphenols from fresh tea leaves. Chemical Engineering Transactions, 32, 1795– 1800. https://doi.org/10.3303/CET1332300

121. Zhang, C., Yang, Y. H., Zhao, X. D., Zhang, L., Li, Q., Wu, C., Ding, X., & Qian, J. Y. (2021). Assessment of impact of pulsed electric field on functional, rheological and structural properties of vital wheat gluten. LWT - Food Science and Technology, 147(April), 111536. https://doi.org/10.1016/j.lwt.2021.111536

122. Zhang, S., Sun, L., Ju, H., Bao, Z., Zeng, X., & Lin, S. (2021). Research advances and application of pulsed electric field on proteins and peptides in food. Food Research International, 139(1), 109914. https://doi.org/10.1016/j.foodres.2020.109914

123. Zhang, Z. H., Wang, L. H., Zeng, X. A., Han, Z., & Brennan, C. S. (2019). Non-thermal technologies and its current and future application in the food industry: A review. International Journal of Food Science and Technology, 54(1), 1– 13. https://doi.org/10.1111/ijfs.13903

124. Zhang, Z. H., Zeng, X. A., Brennan, C. S., Brennan, M., Han, Z., & Xiong, X. Y. (2015). Effects of pulsed electric fields (ИЭП) on vitamin C and its antioxidant properties. International Journal of Molecular Sciences, 16(10), 24159– 24173. https://doi.org/10.3390/ijms161024159

125. Zhang, Z., Zhang, B., Yang, R., & Zhao, W. (2020). Recent developments in the preservation of raw fresh food by pulsed electric field. Food Reviews International, 00(00), 1– 19. https://doi.org/10.1080/87559129.2020.1860083

126. Zhao, W., Yang, R., & Zhang, H. Q. (2012). Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends in Food Science and Technology, 27(2), 83– 96. https://doi.org/10.1016/j.tifs.2012.05.007


Supplementary files

1. Неозаглавлен
Subject
Type Other
Download (B)    
Indexing metadata ▾

Review

For citations:


Burak L.Ch., Sapach A.N. Influence of Pre-Treatment by a Pulsed Electric Field on the Drying Process: Scoping Review. Storage and Processing of Farm Products. 2023;(2):44-71. (In Russ.) https://doi.org/10.36107/spfp.2023.418

Views: 391


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)