The Crystallization Process of Cocoa Butter Equivalents: Mechanism, Factors and New Aspects
https://doi.org/10.36107/spfp.2023.443
Abstract
Introduction: Glazed confectionery products are traditionally in high demand among consumers. Production of chocolate icing in Russia in 2022 increased by 8.6 %. Cocoa butter is a costly raw material. The use of cocoa butter equivalents (CBE) enables the stable production of chocolate glazes. CBE are mostly similar in triacylglyceride composition (TGS) to cocoa butter, but often not identical. The crystallization characteristics of cocoa butter and CBE, such as temperature and duration, largely determine the structuring process of the glaze.
Purpose: To study the influence of the fatty acid and triglyceride composition of CBE on their crystallization process. Purpose of the study: to investigate the influence of fatty acid and triglyceride composition of CBE on their crystallization process. The objects of the study were samples of cocoa butter and CBE from different manufacturers.
Materials and Methods: Characteristics offat crystallization were determined by colorimetric method, triglyceride and fatty acid composition were studied by gas-liquid chromatography.
Results: A comparison of the results of crystallization temperature measurements obtained on the Jensen device and on the MultiTherm device showed the necessity of introducing correlation coefficients. The relationship between the content of triglycerides POS and POP and the solidification temperature of fats was established. We observed a correlation of crystallization time and the content of the sum of triglycerides SOS and POP, with the increase of which the duration of crystallization decreased in CBE samples.
Conclusions: For a more complete assessment of the process of crystallization of fats, along with the solidification temperature Tmax it was proposed to take into accountthe temperature of the beginning of crystallization Tmin, the duration of reaching the temperature minimum and maximum τmin and τmax.
About the Authors
Ella V. MazukabzovaRussian Federation
Oksana S. Rudenko
Russian Federation
References
1. Kondrat'ev, N.B. (2015). Ocenka kachestva konditerskih izdelij. Povyshenie sohrannosti konditerskih izdelij. [Evaluation of the quality of confectionery products. Improvement of preservation of confectionery products]. Moskva: Izdatel'stvo "Pero" [Moscow: Publishing house "Pero"], 250 с. ISBN 978-5-906847-62-1.
2. Linovskaya, N.V. & Mazukabzova, E.V. (2017). Kompleksnaya ocenka pokazatelej kachestva kakao-bobov [Comprehensive assessment of quality indicators of cocoa-beans]. Tekhnologiya i tovarovedenie innovacionnyh pishchevyh produktov [Technology and merchandising of the innovative foodstuff], 6 (47), 90-93.
3. Linovskaya, N.V., Mazukabzova, E.V., & Rudenko O.S. (2019). Nauchno obosnovannye kriterii proizvodstva shokoladnyh polufabrikatov s ispol'zovaniem fruktovo-ovoshchnyh poroshkov [Scientifically based production criteria for chocolate semi-finished products using fruit and vegetable powders]. Vestnik VGUIT [Proceedings of the Voronezh State University of Engineering Technologies], 81 (3), 151–157. DOI: https://doi.org/10.20914/2310-1202-2019-3-151-157
4. Mazukabzova, E.V., & Zajceva, L.V. (2022). Organolepticheskie, reologicheskie i kristallizacionnye svojstva konditerskoj glazuri s poroshkom iz svekly [Organoleptic, rheological and crystallization properties of confectionery glaze with beet powder]. Pishchevye sistemy [Food systems], 5 (2), 132-138. DOI: https://doi.org/10.21323/2618-9771-2022-5-2-132-138
5. Afoakwa, E.O. (2010). Chocolate Science and Technology, 1st ed.; Wiley-Blackwell: West-Sussex, UK. DOI: https://doi.org/10.1002/9781444319880
6. Aumpai, K., Tan, C. P., Huang, Q. & Sonwai, S. (2022). Production of cocoa butter equivalent from blending of illipé butter and palm mid-fraction. Food Chemistry, 384, 132535. DOI: https://doi.org/10.1016/j.foodchem.2022.132535
7. Bahari, A. & Akoh, C.C. (2018). Texture, rheology and fat bloom study of ‘chocolates’ made from cocoa butter equivalent synthesized from illipe butter and palm mid-fraction. LWT, 97, 349-354. DOI: https://doi.org/10.1016/j.lwt.2018.07.013
8. Bresson, S., Rousseau, D., Ghosh, S., Marssi, M.E. & Faivre, V. (2011). Raman spectroscopy of the polymorphic forms and liquid state of cocoa butter. Eur. J. Lipid Sci. Technol., 113, 992–1004. DOI: https://doi.org/10.1002/ejlt.201100088
9. Castro-Alayo, E.M., Balcázar-Zumaeta, C.R., Torrejón-Valqui, L., Medina-Mendoza, M., Cayo-Colca, I.S. & Cárdenas-Toro, F.P. (2023). Effect of tempering and cocoa butter equivalents on crystallization kinetics, polymorphism, melting, and physical properties of dark chocolates. LWT, 173, 114402, DOI: https://doi.org/10.1016/j.lwt.2022.114402
10. Castro-Alayo, E. M., Torrejon-Valqui, L., Medina-Mendoza, M., Cayo-Colca, I. S., & Cardenas-Toro, F. P. (2022). Kinetics crystallization and polymorphism of cocoa butter throughout the spontaneous fermentation process. Foods, 11(12), 1769. DOI: https://doi.org/10.3390/foods11121769
11. Chen, J., Ghazani, S. M., Stobbs, J. A., & Marangoni, A. G. (2021). Tempering of cocoa butter and chocolate using minor lipidic components. Nature Communications, 12(1), 5018. DOI: https://doi.org/10.1038/s41467-021-25206-1
12. Chen, Y., Wang, W., Zhang, W., Tan, C.-P., Lan, D., & Wang, Y. (2022). Characteristics and feasibility of olive oil-based diacylglycerol plastic fat for use in compound chocolate. Food Chemistry, 391, 133254. DOI: https://doi.org/10.1016/j.foodchem.2022.133254
13. Declerck, A., Nelis, V., Danthine, S., Dewettinck, K., & Van der Meeren, P. (2021). Characterisation of fat crystal polymorphism in cocoa butter by time-domain NMR and DSC deconvolution. Foods, 10(3), 520. DOI: https://doi.org/10.3390/foods10030520
14. Devos, N., Reyman, D. & Sanchez-Cortes, S. (2020). Chocolate composition and its crystallization process: A multidisciplinary analysis. Food Chemistry, 342, 1–7. DOI: https://doi.org/10.1016/j.foodchem.2020.128301
15. Ewens, H., Metilli, L. & Simone, E. (2021). Analysis of the effect of recent reformulation strategies on the crystallization behaviour of cocoa butter and the structural properties of chocolate. Current Research in Food Science, 4, 105-114. DOI: https://doi.org/10.1016/j.crfs.2021.02.009
16. Gresti J., Bugaut M., Maniongui C. & Bezard J. (1993). Composition of molecular species of triacylglycerols in bovine milk fat. Journal of Diary Science, 76(7), 1850-1869. DOI: https://doi.org/10.3168/jds.S0022-0302(93)77518-9
17. International Cocoa Organisation (ICCO), 2019. Cocoa Market Review December 2019. ICCO, Abidjan.
18. Lipp, M., & Anklam, E. (1998). Review of cocoa butter and alternative fats for use in chocolate – Part A. Compositional data. Food Chemistry, 62 (1), 73-97. DOI: https://doi.org/10.1016/S0308-8146(97)00160-X
19. Lipp, M., Simoneau, C., Ulberth, F., Anklam, E., Crews, C., Brereton, P., Greyt, W., Schwack, W. & Wiedmaier, C. (2001). Composition of Genuine Cocoa Butter and Cocoa Butter Equivalents. Journal of Food Composition and Analysis,14 (4), 399-408. DOI: https://doi.org/10.1006/jfca.2000.0984
20. Liu, W., Yao, Y., Li, C. (2022). Effect of tempered procedures on the crystallization behavior of different positions of cocoa butter products. Food Chemistry, 370, 1–8. DOI: https://doi.org/10.1016/j.foodchem.2021.131002
21. Peschar, R., Pop, M., De Ridder, D. J. A., Mechelen, J. B., Driessen, R. A. J. & Schenk, H. (2004). Crystal Structures of 1,3-Distearoyl-2-oleoylglycerol and Cocoa Butter in the β(V) Phase Reveal the Driving Force Behind the Occurrence of Fat Bloom on Chocolate. Journal of Physical Chemistry B, 108. DOI: https://doi.org/10.1021/jp046723c
22. Pirouzian, H.R., Konar, N., Palabiyik, I., Oba, S., Toker, O.S. (2020). Precrystallization process in chocolate: Mechanism, importance and novel aspects. Food Chemistry, 321, 1–12. DOI: https://doi.org/10.1016/j.foodchem.2020.126718
23. Jin, J., Jin, Q., Wang, X., & Akoh, C.C. (2019). Improving heat and fat bloom stabilities of “dark chocolates” by addition of mango kernel fat-based chocolate fats. Journal of Food Engineering, 246, 33–41. https://doi.org/10.1016/j.jfoodeng.2018.10.027
24. Velásquez-Reyes, D., Rodríguez-Campos, J., Avendaño-Arrazate, C., Gschaedler, A., Alcázar-Valle, M. & Lugo-Cervantes, E. (2023). Forastero and Criollo cocoa beans, differences on the profile of volatile and non-volatile compounds in the process from fermentation to liquor. Heliyon, 9(4), e15129. https://doi.org/10.1016/j.heliyon.2023.e15129
25. Yao, Y., Liu, W., Zhang, D., Li, R., Zhou, H., Li, C., et al. (2020). Dynamic changes in the triacylglycerol composition and crystallization behavior of cocoa butter. LWT–Food Science and Technology, 129, 1–8. DOI: https://doi.org/10.1016/j.lwt.2020.109490
26. Yoshikawa S., Watanabe S., Yamamoto Y. & Kaneko F. (2020). Binary Phase Behavior of 1,3-Distearoyl-2-oleoyl-snglycerol (SOS) and Trilaurin (LLL). Molecules, 25, 5313. DOI: https://doi.org/10.3390/molecules25225313
27. Yao, Y., Liu, W., Zhang, D., Li, R., Zhou, H., Li, C. & Wang, S. (2020). Dynamic changes in the triacylglycerol composition and crystallization behavior of cocoa butter. LWT,129, 109490. DOI: https://doi.org/10.1016/j.lwt.2020.109490
28. Sato, K. (2001). Crystallization behaviour of fats and lipids – A review. Chemical Engineering Science, 56(7), 2255-2265. DOI: https://doi.org/10.1016/S0009-2509(00)00458-9
Supplementary files
Review
For citations:
Mazukabzova E.V., Rudenko O.S. The Crystallization Process of Cocoa Butter Equivalents: Mechanism, Factors and New Aspects. Storage and Processing of Farm Products. 2023;(2):103-117. (In Russ.) https://doi.org/10.36107/spfp.2023.443