Factors Affecting the Quality and Shelf Life of Fermented Beverages from Fruit Raw Materials: Scoping Review
https://doi.org/10.36107/spfp.2023.447
Abstract
Introduction: During the technological processes of processing blueberries (Vaccinium myrtillus), the amount of natural biologically active substances (BAS), in particular polyphenolic complexes and proanthocyanidins, is reduced to varying degrees. The analysis of publications of domestic and foreign researchers devoted to the complex and deep processing of blueberries made it possible to identify a problematic field of research — an insufficient degree of study and systematization of the influence of technological parameters on the safety of biologically active complexes of blueberries.
Purpose: The authors set a goal to critically analyze the existing blueberry processing technologies in order to identify the prospects for complex blueberry processing technologies, including those using biotechnological techniques that allow obtaining various functional products.
Materials and Methods: Literature sources containing up-to-date information on the methods of processing blueberries (Vaccinium myrtillus L.), published in the period from 2010 to 2022, were analyzed. The following search engines and electronic libraries were used: Scopus, Web of Science, Google Scholar, Medline, E-library.
Results: It is revealed that the most promising methods, from the point of view of the preservation of the complex of bioactive substances of blueberries and the intensity of technological processes, are sublimation and IR drying, freezing. These methods make it possible to obtain products (concentrated juice, blueberry powder) with minimal losses of raw materials and with maximum preservation of vitamin-mineral and anthocyanin complexes of blueberries. It is shown that complex technologies, deep processing technologies based on the use of a combination of physical and physico chemical processes, and biotechnology with the use of highly specific enzyme preparations, including complex action, are of particular interest.
Conclusions: The analysis of the publications of domestic and foreign researchers devoted to the complex and deep processing of blueberries has revealed a problematic field of research — the insufficient degree of knowledge and systematization of the influence of technological parameters on the safety of biologically active blueberry complexes. Of particular importance for the organization of innovative and technologically advanced processing industries are complex technologies and technologies of deep processing, which make it possible to increase the efficiency of technological processes and obtain a wide range of food ingredients and biologically active substances from secondary products.
About the Authors
Olesya S. EgorovaRussian Federation
Dilyara R R. Akbulatova
Russian Federation
Aleksey A. Shilkin
Russian Federation
References
1. Akagić, A., Oras, A., Gaši, F., Meland, M., Drkenda, P., Memić S., Spaho, N., Žuljević, S. O., Jerković, I., Musić, O., Hudina, M. (2022). A Comparative Study of Ten Pear (Pyrus communis L.) Cultivars in Relation to the Content of Sugars, Organic Acids, and Polyphenol Compounds. Foods, 11(19), 3031. https://doi.org/10.3390/foods11193031
2. Alberti, A., Machado dos Santos, T. P., Ferreira Zielinski, A. A., Eleuterio dos Santos, C. M., Braga, C. M., Demiate, I.M., & Nogueira, A. (2016). Impact on chemical profile in apple juice and cider made from unripe, ripe and senescent dessert varieties. LWT - Food Science and Technology, 65, 436–443. https://doi.org/10.1016/J.LWT.2015.08.045
3. Arnold, M., & Gramza-Michałowska, A. (2022). Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Comprehensive Reviews in food science and food safety, 21(6), 5038-5076 https://doi.org/10.1111/1541-4337.13059
4. Azhuvalappil, Z., Fan, X., Geveke, D.J., & Zhang, H.Q. (2010). Thermal and nonthermal processing of apple cider: storage quality under equivalent process conditions. Journal of Food Quality, 33(5), 612-631. https://doi.org/10.1111/j.1745-4557.2010.00342.x
5. Barba, F. J., Koubaa, M., do Prado-Silva, L., Orlien, V., & Sant’Ana, A. de S. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends in Food Science & Technology, 66, 20–35. https://doi.org/10.1016/j.tifs.2017.05.011
6. Başlar, M., & Ertugay, M. F. (2012). The effect of ultrasound and photosonication treatment on polyphenoloxidase (PPO) activity, total phenolic component and colour of apple juice. International Journal of Food Science and Food Technology, 48(4), 886–892. https://doi.org/10.1111/ijfs.12015
7. Calugar, P. C., Coldea, T. E., Salanță, L. C., Pop, C. R., Pasqualone, A., Burja-Udrea, C., Zhao, H., & Mudura, E. (2021). An overview of the factors influencing apple cider sensory and microbial quality from raw materials to emerging processing technologies. Processes, 9(3), 502. https://doi.org/10.3390/pr9030502
8. Caminiti, I. M., Palgan, I., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., & Lyng, J. G. (2010). The Effect of Ultraviolet Light on Microbial Inactivation and Quality Attributes of Apple Juice. Food and Bioprocess Technology, 5(2), 680–686. https://doi.org/10.1007/s11947-010-0365-x
9. Charles-Rodríguez, A. V., Nevárez-Moorillón, G. V., Zhang, Q. H., & Ortega-Rivas, E. (2007). Comparison of Thermal Processing and Pulsed Electric Fields Treatment in Pasteurization of Apple Juice. Food and Bioproducts Processing, 85(2), 93–97. https://doi.org/10.1205/fbp06045
10. Choudhary, R., & Bandla, S. (2012). Ultraviolet Pasteurization for Food Industry. International Journal of Food Science and Nutrition Engineering, 2(1): 12-15. https://doi.org/10.5923/j.food.20120201.03
11. Chueca, B., Ramírez, N., Arvizu-Medrano, S. M., García-Gonzalo, D., & Pagán, R. (2015). Inactivation of spoiling microorganisms in apple juice by a combination of essential oils’ constituents and physical treatments. Food Science and Technology International, 22(5), 389–398. https://doi.org/10.1177/1082013215606832
12. Coldea, T.E., Socaciu, C., Mudura, E., Socaci, S.A., Ranga, F., Pop, C.R., Vriesekoop, F., & Pasqualone, A. (2020). Volatile and phenolic profiles of traditional Romanian apple brandy after rapid ageing with different wood chips. Food Chemistry, 320, 126643. https://doi.org/10.1016/j.foodchem.2020.126643
13. Diao, E., Chu, X., Hou, H., Dong, H., & Gao, D. (2018). Improving the safety of apple juice by UV irradiation. Journal of Food Measurement and Characterization, 12, 2005–2011. https://doi.org/10.1007/s11694-018-9815-3
14. Donahue, D. W., Canitez, N., & Bushway, A. A. (2004). UV inactivation of E. coli O157:H7 in apple cider: Quality, sensory and shelf-life analysis. Journal of Food Processing and Preservation, 28(5), 368–387. https://doi.org/10.1111/J.1745-4549.2004.23062.X
15. Dong, Q., Manns, D. C., Feng, G., Yue, T., Churey, J. J., & Worobo, R. W. (2010). Reduction of patulin in apple cider by UV radiation. Journal of Food Protection, 73(1), 69–74. https://doi.org/10.4315/0362-028x-73.1.69
16. Dos Santos, T. P. M., Alberti, A., Judacewski P., Zielinski, A. A. F., & Nogueira, A. (2018). Effect of sulphur dioxide concentration added at different processing stages on volatile composition of ciders. Journal of the institute of brewing, 124(3), 261-268. https://doi.org/10.1002/jib.500
17. Falguera, V., Pagan, J., Garza, S., Garvin, A., & Ibarz, A. (2012). Inactivation of polyphenol oxidase by ultraviolet irradiation: Protective effect of melanins. Journal of Food Engineering, 110(2), 305-309. https://doi.org/10.1016/j.jfoodeng.2011.04.005
18. Fan, X., & Geveke, D. J. (2007). Furan Formation in Sugar Solution and Apple Cider upon Ultraviolet Treatment. Journal of Agricultural and Food Chemistry, 55(19), 7816–7821. doi:10.1021/jf071366z
19. Feng, S., Yi, J., Li, X., Wu, X., Zhao, Y., Ma, Y., & Bi, J. (2021). Systematic review of phenolic compounds in apple fruits: Compositions, distribution, absorption, metabolism, and processing stability. Journal of agricultural and food chemistry, 69(1), 7-27. https://doi.org/10.1021/acs.jafc.0c05481
20. Guiné, R. P. F., Barroca, M. J., Coldea, T. E., Bartkiene, E., & Anjos, O. (2021). Apple Fermented Products: An Overview of Technology, Properties and Health Effects. Processes, 9(2), 223. doi:10.3390/pr9020223
21. Han, Y., Su, Zh., & Du, J. (2023). Effects of apple storage period on the organic acids and volatiles in apple wine. LWT, 173, Article 114389. https://doi.org/10.1016/j.lwt.2022.114389
22. Ioannoua, I., Hafsaa, I., Hamdib, S., Charbonnela, C., & Ghoula M. (2012). Review of the effects of food processing and formulation on flavonol and anthocyanin behavior. Journal of food engineering, 111, 208-217. https://doi.org/10.1016/j.jfoodeng.2012.02.006
23. Islam, M. S., Patras, A., Pokharel, B., Wu, Y., Vergne, M. J., Shade, L., Xiao, H., Sasges, M. (2016). UV-C irradiation as an alternative disinfection technique: Study of its effect on polyphenols and antioxidant activity of apple juice. Innov. Food Sci. Emerg., 34, 344–351.
24. Juhart, J., Medic, A., Veberic, R., Hudina, M., Jakopic, J., Stampar, F. (2022). Phytochemical Composition of Red-Fleshed Apple Cultivar ‘Baya Marisa’ Compared to Traditional, White-Fleshed Apple Cultivar ‘Golden Delicious’. Horticulturae, 8(9), 811. https://doi.org/10.3390/horticulturae8090811
25. Jukanti, A. (2017). Function(s)/Role(s) of Polyphenol Oxidases. Polyphenol Oxidases (PPOs) in Plants, 73–92. doi:10.1007/978-981-10-5747-2_5
26. Khan, M. H., Kiran, A., Saif, H., Nadeem, M. S., & Khan, M. (2022). Effect of Apple Quality, Yeast Strains and Use of Antimicrobial Additives on Cider Production with Therapeutic Potential. Acta Scientific MICROBIOLOGY, 5(1), 94-103. https://doi.org/10.31080/asmi.2022.05.0990
27. Kobelev, K. V., Volkova, T. N., Kharlamova, L. N., Lazareva, I. V., & Danilyan, A. V. (2021). Metody uskorennogo prognozirovaniya srokov godnosti pivnykh napitkov [Methods of accelerated prediction of the shelf life of beer drinks]. Pishchevaya promyshlennost' [Food industry], (7), 82-85. https://doi.org/10.52653/PPI.2021.7.7.008
28. Koutchma, T. (2009). Advances in Ultraviolet Light Technology for Non-thermal Processing of Liquid Foods. Food and Bioprocess Technology, 2(2), 138–155. https://doi.org/10.1007/s11947-008-0178-3
29. Koutchma, T., Popović, V., Ros-Polski, V., & Popielarz, A. (2016). Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Comprehensive Reviews in Food Science and Food Safety, 15(5), 844–867. https://doi.org/10.1111/1541-4337.12214.
30. Kovaleva, I. L., Soboleva, O. A., & Sevost'yanova, E.M. (2020). Vliyanie metodov "uskorennogo stareniya" na sokhrannost' potrebitel'skikh svoistv bezalkogol'nykh napitkov s tsel'yu prognozirovaniya srokov godnosti [The influence of "accelerated aging" methods on the safety of consumer properties of soft drinks in order to predict shelf life]. Pivo i napitki [Beer and beverages]. (2), 6-10. https://doi.org/10.24411/2072-9650-2020-10015
31. Kuz'mina, E. I., Egorova, O. S., & Akbulatova, D. R. (2022). Sidry v Rossii i za rubezhom [Ciders in Russia and abroad. Raw material]. Syr'e. Pishchevaya promyshlennost' [Food industry], (12), 87-91. https://doi.org/10.52653/PPI.2022.12.12.018
32. Li, J., Zhang, C., Liu, H., Liu, J., & Jiao, Z. (2020). Profiles of sugar and organic acid of fruit juices: A comparative study and implication for authentication. Journal of Food Quality. Article ID 7236534. https://doi.org/10.1155/2020/7236534
33. Lee, H., Kim, H., Cadwallader, K. R., Feng, H., & Martin, S. E. (2013). Sonication in combination with heat and low pressure as an alternative pasteurization treatment—Effect on Escherichia coli K12 inactivation and quality of apple cider. Ultrasonics Sonochemistry, 20(4), 1131–1138. https://doi.org/10.1016/j.ultsonch.2013.01.003
34. Lobo, A. P., Bedriñana, R. P., Madrera, R. R., & Valles, B. S. (2021). Aromatic, olfactometric and consumer description of sweet ciders obtained by cryo-extraction. Food Chemistry, 338. Article 127829. https://doi.org/10.1016/j.foodchem.2020.127829
35. Mahendran, R., Ramanan, K. R., Barba, F. J., Lorenzo, J. M., López-Fernández, O., Munekata, P. E. S., Roohinejad, S., Sant’Ana, A. S., & Tiwari, B. K. (2019). Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends in Food Science & Technology, 88, 67–79. https://doi.org/10.1016/j.tifs.2019.03.010
36. Makarov, S. S., Zhirov, V. M., Panasyuk, A. L., & Presnyakova, O. P. (2018). Tekhnologicheskie aspekty proizvodstva fruktovykh vin s povyshennoi biologicheskoi tsennost'yu [Technological aspects of the production of fruit wines with increased biological value]. Pivo i napitki [Beer and beverages], (2), 42-45.
37. Mannozzi, C., Fauster, T., Haas, K., Tylewicz, U., Romani, S., Rosa, M. D., & Jaeger, H. (2018). Role of thermal and electric field effects during the pre-treatment of fruit and vegetable mash by pulsed electric fields (PEF) and ohmic heating (OH). Innovative Food Science & Emerging Technologies, 48, 131–137. https://doi.org/10.1016/j.ifset.2018.06.004
38. Matveeva, N. A., & Khasanov, A. R. (2016). Prognozirovanie sroka godnosti metodom uskorennogo testirovaniya v tekhnologii napitkov funktsional'nogo naznacheniya [Prediction of shelf life by accelerated testing in the technology of functional beverages]. Nauchnyi zhurnal NIU ITMO. Seriya: protsessy i apparaty pishchevykh proizvodstv [Scientific journal of NIU ITMO. Series: processes and devices of food production], (4), 75-82.
39. Müller, A., Noack, L., Greiner, R., Stahl, M. R., & Posten, C. (2014). Effect of UV-C and UV-B treatment on polyphenol oxidase activity and shelf life of apple and grape juices. Innovative Food Science & Emerging Technologies, 26, 498–504. https://doi.org/10.1016/j.ifset.2014.05.014
40. Panasyuk, A. L., Kuz'mina, E. I., & Egorova O. S. (2014). Izmenenie soderzhaniya organicheskikh kislot pri proizvodstve plodovykh napitkov i vin [Changes in the content of organic acids in the production of fruit drinks and wines]. Pivo i napitki [Beer and Beverages], (2), 36-38.
41. Park, Sh-Y., Kang, T-M., Kim, M.-J., & Kim, M.-J. (2018). Enzymatic browning reaction of apple juices prepared using a blender and a low-speed masticating household juicer. Bioscience, Biotechnology, and Biochemistry, 82(11), 2000–2006. https://doi.org/10.1080/09168451.2018.1497943
42. Park, J-S., & Ha, J-W. (2019). Ultrasound treatment combined with fumaric acid for inactivating food-borne pathogens in apple juice and its mechanisms. Food Microbiology, 84, 103277. https://doi.org/10.1016/j.fm.2019.103277
43. Pinto, T., Vilela, A., & Cosme, F. (2022). Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. Beverages, 8(2), 33. https://doi.org/10.3390/beverages8020033
44. Posokina, N. E., & Zakharova, A. I. (2023). Sovremennye netermicheskie sposoby obrabotki rastitel'nogo syr'ya, primenyaemye dlya uvelicheniya ego khranimosposobnosti [Modern non-thermal methods of processing plant raw materials used to increase its storage capacity]. Pishchevye sistemy [Food Systems], 6(1), 4-10. https://doi.org/10.21323/2618-9771-2023-6-1-4-10
45. Preti, R., & Tarola, A. M. (2021). Study of polyphenols, antioxidant capacity and minerals for the valorisation of ancient apple cultivars from Northeast Italy. European Food Research and Technology, 247, 273–283. https://doi.org/10.1007/s00217-020-03624-7
46. Rawson, A., Patras, A., Tiwari, B. K., Koutchma, T., & Brunton, N. (2011a). Effect of thermal and non-thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Research International, 44, 1875–1887. https://doi.org/10.1016/j.foodres.2011.02.053
47. Rodríguez-Bencomo, J. J., Viñas, I., Martín-Belloso, O., & Soliva-Fortuny, R. (2020). Formation of patulin-glutathione conjugates induced by pulsed light: A tentative strategy for patulin degradation in apple juices. Food Chemistry, 315, 126283. https://doi.org/10.1016/j.foodchem.2020.126283
48. Saeeduddin, M., Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Awad, F. N., Hu, B., Lei, S., Zeng, X. (2015). Quality assessment of pear juice under ultrasound and commercial pasteurization processing conditions. LWT - Food Science and Technology, 64(1), 452–458. https://doi.org/10.1016/j.lwt.2015.05.005
49. Salih, F. M. (2006). Risk assessment of combined photogenotoxic effects of sunlight and food additives. Science of The Total Environment, 362(1-3), 68–73. https://doi.org/10.1016/j.scitotenv.2005.05.027
50. Simonato, B., Lorenzini, M., & Zapparoli, G. (2021). Effects of post-harvest fungal infection of apples on chemical characteristics of cider. LWT, 138, Article 110620. https://doi.org/10.1016/j.lwt.2020.110620
51. Shirshova, A. A., Ageeva, N. M., & Biryukova, S. A. (2020). Issledovanie khimicheskogo sostava yablok razlichnykh sortov, proizrastayushchikh v khozyaistvakh Krasnodarskogo kraya [nvestigation of the chemical composition of apples of various varieties growing in the farms of the Krasnodar Territory]. Vestnik VGUIT [Bulletin of VSUIT], 82(2), 131-136. https://doi.org/10.20914/2310-1202-2020-2-131-136
52. Tarko, T., Januszek, M., Pater, A., Sroka, P., & Duda-Chodak, A. (2020). The quality of ciders depends on the must supplementation with mineral salts. Molecules, 25(16). Article 3640. https://doi.org/10.3390/molecules25163640
53. Techakanon, C., & Sirimuangmoon, C. (2020). The Effect of Pasteurization and Shelf Life on the Physicochemical, Microbiological, Antioxidant, and Sensory Properties of Rose Apple Cider during Cold Storage. Beverages, 6(3), 43; https://doi.org/10.3390/beverages6030043
54. Turk, M. F., Vorobiev, E., & Baron, E. (2012). Improving apple juice expression and quality by pulsed electric field on an industrial scale. LWT - Food Science and Technology, 49(2), 245–250. https://doi.org/10.1016/j.lwt.2012.07.024
55. Ugarte-Romero, E., Feng, H., Martin, S. E., Cadwallader, K., & Robinson, S. J. (2006). Inactivation of Escherichia coli with power ultrasound in apple cider. Journal of Food Science, 71(2), 102–108. https://doi.org/10.1111/j.1365-2621.2006.tb08890.x
56. Vasantha Rupasinghe, H. P., & Juan, L. (2012). Emerging Preservation Methods for Fruit Juices and Beverages. Food Additive. https://doi.org/10.5772/32148
57. Vidot, K., Rivard, C., Vooren, G. V., Siret, R., & Lahaye, M. (2020). Metallic ions distribution in texture and phenolic content contrasted cider apples. Postharvest Biology and Technology, 160, Article 111046. https://doi.org/10.1016/j.postharvbio.2019.111046
58. Wandjou, J. G. N., Mevi, S., Sagratini, G., Vittori, S., Dall’Acqua, S., Caprioli, G., Lupidi, G., Mombelli, G., Arpini, S., Allegrini, P., Les, F., López, V., Maggi, F. (2020). Antioxidant and enzyme inhibitory properties of the polyphenolic-rich extract from an ancient apple variety of Central Italy (Mela Rosa dei Monti Sibillini). Plants, 9(1), 9. https://doi.org/10.3390/plants9010009
59. Way, M. L, Jones, J. E., Longo, R., Dambergs, R. G., & Swarts, N. D. (2022). A Preliminary Study of Yeast Strain Influence on Chemical and Sensory Characteristics of Apple Cider. Fermentation, 8(9), 455. https://doi.org/10.3390/fermentation8090455
60. Wibowo, S., Essel, E. A., Man, S. D., Bernaert, N., Droogenbroeck, B. V., Grauwet, T., Loey, A. V., & Hendrickx, M. (2019). Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses, Innovative Food Science & Emerging Technologies, 54, 64-77. https://doi.org/10.1016/j.ifset.2019.03.004
61. Wicklund, T., Skottheim, E. R., Remberg, S. F. (2020). Various Factors Affect Product Properties in Apple Cider Production. International Journal of Food Studies, 9, SI84–SI96. https://doi.org/10.7455/ijfs/9.SI.2020.a7
62. Wiktor, A., Mandal, R., Singh, A., & Pratap Singh, A. (2019). Pulsed Light treatment below a Critical Fluence (3.82 J/cm2) minimizes photo-degradation and browning of a model Phenolic (Gallic Acid) Solution. Foods, 8(9), 380. https://doi.org/10.3390/foods8090380
63. Wu, C., Li, T., Qi, J., Jiang, T., Xu, H., & Lei, H. (2020). Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity, and flavor volatiles of apple juice. LWT, 122. Article 109064. https://doi.org/10.1016/j.lwt.2020.109064
64. Xu, Z., Yang, Z., Ji, J., Mou, Y., Chen, F., Xiao, Z., Liao, X., Hu, X., & Ma, L. (2023). Polyphenol mediated non-enzymatic browning and its inhibition in apple juice. Food Chemistry, 404, Part A, Article 134504. https://doi.org/10.1016/j.foodchem.2022.134504
65. Yang, Y., Shen, H., Tian, Y., You, Z., & Guo, Y. (2019). Effect of thermal pasteurization and ultraviolet treatment on the quality parameters of not-from-concentrate apple juice from different varieties. CyTA - Journal of Food, 17(1), 189–198. https://doi.org/10.1080/19476337.2019.1569725
66. Zhao, X. Q., & Bai, F.W. (2012). Zinc and yeast stress tolerance: micronutrient plays a big role. Journal of biotechnology, 158(4), 176-183. https://doi.org/10.1016/j.jbiotec.2011.06.038
67. Zhao, D., Lau, E., Padilla-Zakour, O. I., & Moraru, C. I., (2017). Role of pectin and haze particles in membrane fouling during cold microfiltration of apple cider. Journal of Food Engineering, 200, 47-58. https://doi.org/10.1016/j.jfoodeng.2016.12.020
Review
For citations:
Egorova O.S., Akbulatova D.R., Shilkin A.A. Factors Affecting the Quality and Shelf Life of Fermented Beverages from Fruit Raw Materials: Scoping Review. Storage and Processing of Farm Products. 2023;(2):14-32. (In Russ.) https://doi.org/10.36107/spfp.2023.447