Особенности производства и усвоения белков растительного и животного происхождения: обзор предметного поля
https://doi.org/10.36107/spfp.2024.1.473
Аннотация
Введение: Ключевым аспектом обеспечения качественного питания является оптимальное соотношение и количественное содержание нутриентов. Белок занимает центральное место в суточном рационе человека. Анализ текущего состояния и перспектив комплексной переработки высокобелкового растительного сырья с целью повышения его биологической ценности представляет собой важную научную и общественную задачу.
Цель: Критическое осмысление, систематизация и обобщение особенностей существующей переработки растительного белка для повышения его биологической ценности.
Материалы и методы: Для анализа текущего состояния производства сырья животного и растительного происхождения был проведен обзор научных публикаций и электронных ресурсов. Исследование охватывает период с 1996 по 2023 годы. Поиск релевантной литературы осуществлялся через научные базы данных, такие как Scopus, Web of Science и РИНЦ, а также с использованием системы Google Scholar. Исследование включало работы, опубликованные на русском и английском языках. Для систематизации обзора литературы использовался протокол PRISMA.
Результаты: Производство белка животного происхождения оказывает заметное экологическое воздействие из-за значительных негативных последствий для окружающей среды. Несмотря на высокие качественные характеристики животного белка, мировое сообщество стремится к минимизации его потребления путём частичной замены на растительные источники белка. Разработка пищевых продуктов на основе растительного белка связана с рядом проблем, в частности, с биосинтезом белка в организме и спецификой пищевых привычек населения. Растительный белок, в сравнении с животным, уступает по аминокислотному профилю и имеет более низкую биодоступность из-за содержания антипитательных веществ. Для улучшения его характеристик применяются различные методы обработки растительного сырья, направленные на нейтрализацию негативного влияния сопутствующих компонентов, включая химические и физические методы воздействия, концентрирование и изоляцию белков. Перед научным сообществом стоит задача разработки оптимальных методов переработки растительного сырья для повышения эффективности усвоения белков, с учетом особенностей пищевой базы и механизмов усвоения белка в организме человека.
Выводы: Применение различных способов обработки высокобелкового растительного сырья позволяют повысить доступность белковых компонентов в пищеварительной системе человека. Биологическую ценность растительного белка можно регулировать комбинированием сырья с разным аминокислотным составом. Многообразие факторов, влияющих на усвоения белковой пищи, диктуют мировому обществу использование комплексного подхода к производству новых высокобелковых продуктов питания.
Об авторах
Елена Сергеевна БычковаРоссия
Доцент
8788-1754
Екатерина Михайловна Подгорбунских
Полина Владимировна Кудачева
Наталья Борисовна Еремеева
Список литературы
1. Антипова, Л. В., Толпыгина, И. Н., Успенская, М. Е., & Попов, В. И. (2015). Гигиенические аспекты и перспективы отечественного производства растительных белков. Гигиена и санитария, 94(9), 51–54.
2. Бычкова, Е. С., Подгорбунских, Е. М., Рождественская, Л. Н., Бухтояров, В. А., & Кудачева, П. В. (2022). Разработка технологии хлебобулочных изделий с введением горохового гидролизата. Хранение и переработка сельхозсырья, 3, 56–66. https://dx.doi.org/10.36107/spfp.2022.371
3. Комлацкий, Г. В., (2022). Технологические аспекты снижения выбросов парниковых газов в животноводстве. Политематический сетевой электронный научный журнал кубанского государственного аграрного университета, 181, 116–126.
4. Самошкин, С. П., Бычкова, Е. С., Бычков, А. Л., Ломовский, О. И., Байзель, Н. Ф., & Черноносов, А. А. (2013). Супы-пюре лечебно-профилактического назначения с питательными веществами в легкоусвояемой форме. Пищевая промышленность, 8, 26–27.
5. Abbas, Y., & Ahmad, A. (2018). Impact of processing on nutritional and antinutritional factors of legumes: A review. Annals Food Science and Technology, 19(2), 199–215.
6. Adhikari, S., Schop, M., de Boer, I. J. M., & Huppertz, T. (2022). Protein quality in perspective: A review of protein quality metrics and their applications. Nutrients. 14, Article 947. ttps://dx.doi.org/10.3390/nu14050947
7. Adeleke, O. R., Adiamo, O. Q., Fawale, O. S., & Olamiti, G. (2017). Effect of soaking and boiling on anti-nutritional factors, oligosaccharide contents and protein digestibility of newly developed bambara groundnut cultivars. Turkish Journal of Agriculture - Food Science and Technology, 5(9), 1006–1014. https://dx.doi.org/10.24925/turjaf.v5i9.1006-1014.949
8. Afify Abd El-Moneim, M. R., El-Beltagi, H. S., Abd El-Salam, S. M., & Omran, A. A. (2012). Protein solubility, digestibility and fractionation after germination of sorghum varieties. PLoS One, 7(2), Article 31154. https://dx.doi.org/10.1371/journal.pone.0031154
9. Ahmad, R.S., Imran, A., & Hussain, M.B. (2018). Nutritional composition of meat nutritional composition of meat. In M.S. Arshad (Ed.), Meat Science and Nutrition (pp. 61–77). Pakistan.
10. Aiyar, A., & Pingali, P. (2020). Pandemics and food systems-towards a proactive food safety approach to disease prevention & management. Food Security, 12(4), 749–756.
11. Aguilar-Toalá, J. E., Deering, A. J., & Liceaga, A. M. (2020). New insights into the antimicrobial properties of hydrolysates and peptide fractions derived from chia seed (Salvia hispanica L.). Probiotics and Antimicrobial Proteins, 12, 1571–1581. https://dx.doi.org/10.1007/s12602-020-09653-8
12. Aleksandrowicz, L., Green, R., Joy, E. J., Smith, P., & Haines, A. (2016). The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: a systematic review. PLoS One, 11(11), Article 0165797. https://dx.doi.org/10.1371/journal.pone.0165797
13. Alsalman, F. B., & Ramaswamy, H. (2020). Reduction in soaking time and anti-nutritional factors by high pressure processing of chickpeas. Journal of Food Science and Technology, 57(7), 2572–2585. https://dx.doi.org/10.1007/s13197-020-04294-9
14. Amin, A., Petersen, I. L., Malmberg, C., Orlien, V. (2022). Perspective on the effect of protein extraction method on the Antinutritional Factor (ANF) content in seeds. ACS food science & technology, 2, 604–612. https://dx.doi.org/10.1021/acsfoodscitech.1c00464
15. Ashaolu, T. J. (2020). Applications of soy protein hydrolysates in the emerging functional foods: A review. International Journal of Food Science & Technology, 55(2), 421–428. https://dx.doi.org/10.1111/ijfs.14380
16. Atudorei, D., Stroe, S. G., & Codină, G. G. (2021). Impact of germination on the microstructural and physicochemical properties of different legume types. Plants (Basel). 10(3), 592. https://dx.doi.org/10.3390/plants10030592
17. Avilés-Gaxiola, S., Chuck-Hernández, C., Serna Saldívar, S. O. (2017). Inactivation methods of trypsin inhibitor in legumes: A review. Concise Reviews & Hypotheses in Food Science, 83(1), 17–29. https://dx.doi.org/10.1111/1750-3841.13985
18. Bai, M. M., Qin, G. X., Sun, Z. W., & Long, G. H. (2016). Relationship between molecular structure characteristics of feed proteins and protein in vitro digestibility and solubility. Asian-Australasian Journal of Animal Sciences, 29(8), 1159–1165. https://dx.doi.org/10.5713/ajas.15.0701
19. Bryant, C.J. (2022). Plant-based animal product alternatives are healthier and more environmentaly sustainable than animal products. Future Foods, 6, Article 100174. https://dx.doi.org/10.1016/j.fufo.2022.100174
20. Bychkova, E., Dome, K., Gosman, D., Beisel, N., & Chernonosov, A. (2021). Mechanicaly activated enzymatic hydrolysis of pea seeds and its effects on bakery products. Applied Food Biotechnology, 8(3), 213–223. https://dx.doi.org/10.22037/afb.v8i3.32756
21. Calcinai, L., Bonomini, M. G., Leni, G., Faccini, A., Puxeddu, I., Giannini, D., Petrelli, F., Prandi, B., Sforza, S., & Tedeschi, T. (2022). Effectiveness of enzymatic hydrolysis for reducing the alergenic potential of legume by-products. Scientific Reports, 12, 16902. https://dx.doi.org/10.1038/s41598-022-21296-z
22. Capper, J. L., & Cady, R. A. (2019). The effects of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017. Journal of Animal Science, 98(1), 1–14. https:// dx.doi.org/10.1093/jas/skz291
23. Carbonaro, M., Bonomi, F., Iametti, S., Cappelloni, M., & Carnovale, E. (1998). Aggregation of proteins in whey from raw and heat-processed milk: formation of soluble macroaggregates and nutritional consequences. LWT Food Science and Technology, 31, 522–529. https://dx.doi.org/10.1006/fstl.1998.0408
24. Cellura, M., Cusenza, M. A., Longo, S., Luu, L.Q., & Skurk, T. (2022). Life cycle environmental impacts and health effects of protein-rich food as meat alternatives: A review. Sustainability, 14(2), Article 979. https://dx.doi.org/10.3390/su14020979
25. Chakrabarti, S., Jahandideh, F., & Wu, J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. BioMed Research International, 2014, 608979. https://dx.doi.org/10.1155/2014/608979
26. Chang-Yu, Z., Jin-Xuan, C., Xin-Bo, Z., Yun, B., Chun-Bao, L., & Xing-Lian, X. (2019). Evaluation of the secondary structure and digestibility of myofibrillar proteins in cooked ham. CyTA - Journal of Food, 17(1), 78–86. https://dx.doi.org/10.1080/19476337.2018.1554704
27. Das, G., Sharma, A., & Sarkar, P. K. (2022). Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes. Applied Food Research, 2, 100–112. https://dx.doi.org/10.1016/j.afres.2022.100112
28. Dasgupta, P. (2021). The economics of biodiversity: The Dasgupta review. HM Treasury (pp. 1–604). London.
29. Davis, J., Sonesson, U., Baumgartner, D.U., & Nemecek, T. (2010). Environmental impact of four meals with different protein sources: case studies in Spain and Sweden. Food Research International, 43(7), 1874–1884. https://dx.doi.org/10.3389/frsus.2022.841106
30. Degen, L., Halas, V., & Babinszky, L. (2007). Effect of dietary fibre on protein and fat digestibility and its consequences on diet formulation for growing and fattening pigs: A review. Acta Agriculturae Scandinavica, Section A – Animal Science, 57(1), 1–9. https://dx.doi.org/10.1080/09064700701372038
31. Deol, J. K., & Bains, K. (2010). Effect of household cooking methods on nutritional and anti-nutritional factors in green cowpea (Vigna unguiculata) pods. Journal of Food Science and Technology, 47(5), 579–581. https://dx.doi.org/10.1007/s13197-010-0112-3
32. Derkach, S. R., Kuchina, Y. A, Kolotova, D. S., Petrova, L. A., Volchenko, V. I., Glukharev, A. Y., & Grokhovsky, L. A. (2022). Properties of protein isolates from marine hydrobionts obtained by isoelectric solubilisation/precipitation: influence of temperature and processing time. International Journal of Molecular Sciences, 23(22), 14221. https://dx.doi.org/10.3390/ijms232214221
33. Dimina, L., Rémond, D., Huneau, J. F., & Mariotti, F. (2022). Combining plant proteins to achieve amino acid profiles adapted to various nutritional objectives—an exploratory analysis using linear programming. Frontiers in Nutrition, 8, 809685. https:// dx.doi.org/10.3389/fnut.2021.809685
34. Ding, M., Huang, Z., Jin, Z., Zhou, C., Wu, J., Zhao, D., Shan, K., Ke, W., Zhang, M., Nian, Y., & Li, C. (2022). The effect of fat content in food matrix on the structure, rheological properties and digestive properties of protein. Food Hydrocolloids, 126, 107464. https://dx.doi.org/10.1016/j.foodhyd.2021.107464
35. Diouf, A., Sarr, F., Sene, B., Ndiaye, C., Fal, S. M., & Ayessou, N. C. (2019). Pathways for reducing anti-nutritional factors: prospects for vigna unguiculata. Journal of Nutritional Health & Food Science, 7(2), 1–10. https://dx.doi.org/10.15226/jnhfs.2019.001157
36. Duraiswamy, A., Sneha A. M. N., Jebakani K. S., Selvaraj, S., Pramitha J. L., Selvaraj, R., Petchiammal K. I., Sheriff, S. K., Thinakaran, J., Rathinamoorthy. S., & Ramesh Kumar P. R. (2023). Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future. Frontiers in Plant Science, 3, 1070398. https://dx.doi.org/10.3389/fpls.2022.1070398
37. Espinosa-Marrón, A., Adams, K., Sinno, L., Cantu-Aldana, A., Tamez, M., Marrero, A., Bhupathiraju, S.N., & Mattei, J. (2022). Environmental impact of animal-based food production and the feasibility of a shift toward sustainable plant-based diets in the United States. Frontiers in Sustainability, 3, 1–9. http://dx.doi.org/10.3389/frsus.2022.841106
38. Faustino, M., Veiga, M., Sousa, P., Costa, E. M., Silva, S., & Pintado, M. (2019). Agro-food byproducts as a new source of natural food additives. Molecules, 24(6), 1056. https://dx.doi.org/10.3390/molecules24061056
39. Fernandes, A. C., Nishida, W., & Da Costa Proença, R. P. (2010). Influence of soaking on the nutritional quality of common beans (Phaseolus vulgaris L.) cooked with or without the soaking water: A review. International Journal of Food Science and Technology, 45(11), 2209–2218.
40. https://dx.doi.org/10.1111/j.1365-2621.2010.02395.x
41. Ferreira, M. S., Magalhães, M. C., Sousa-Lobo, J. M., & Almeida, I. F. (2020). Trending anti-aging peptides. Cosmetics. 7(4), 91. https://dx.doi.org/10.3390/cosmetics7040091
42. Frick, K. M., Kamphuis, L. G., Siddique, K. H., Singh, K. B., & Foley, R. C. (2017). Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement. Frontiers in Plant Science, 8, Article 87. https://dx.doi.org/10.3389/fpls.2017.00087
43. García Arteaga, V., Demand, V., Kern, K., Strube, A., Szardenings, M., Muranyi, I., Eisner, P., & Schweiggert-Weisz, U. (2022). Enzymatic hydrolysis and fermentation of pea protein isolate and its effects on antigenic proteins, functional properties, and sensory profile. Foods, 11(1), 118. https://dx.10.3390/foods11010118
44. Gopan, A., Sahu, N. P., Varghese, T., Sardar, P., Gupta, S., Gupta, G., & Maiti, M. K. (2019). Preparation of protein isolate from neem seed: biochemical evaluation, antinutrients and in vitro digestibility study. Animal Nutrition and Feed Technologyanim, 19(2), 203–216. https://dx.doi.org/10.5958/0974-181X.2019.00019.2
45. Haque, E., Bhandari, B. R., Gidley, M. J., Deeth, H. C., & Whittaker, A. K. (2011). Ageing-induced solubility loss in milk protein concentrate powder: Effect of protein conformational modifications and interactions with water. Journal of the Science of Food and Agriculture, 91, 2576–2581. https://dx.doi.org/10.1002/jsfa.4478
46. Haque, E. & Bhandari, B. R. (2015). Effects of protein conformational modifications, enthalpy relaxation, and interaction with water on the solubility of milk protein concentrate powder. 11th Symposium on the Properties of Water (ISOPOW) (pp. 437–450). New York.
47. He, S., Yang, K., Wen, J., Kuang, T., Cao, Z., Zhang, L., Han, S., Jian, S., Chen, X., Zhang, L., Deng, J., & Deng, B. (2023). Antimicrobial peptides relieve transportation stress in ragdoll cats by regulating the gut microbiota. Metabolites, 13(3), 326. https://dx.doi.org/10.3390/metabo13030326
48. Hughes, J. S., Acevedo, E., Bressani, R., & Swanson, B. G. (1996). Effects of dietary fiber and tannins on protein utilization in dry beans (Phaseolus vulgaris). Food Research International, 29(3–4), 331–338. https://dx.doi.org/10.1016/0963-9969(96)00027-0
49. Ikram, A., Saeed, F., Afzaal, M., Imran, A., Niaz, B., Tufail, T., Hussain, M., & Anjum, F.M. (2021). Nutritional and end‐use perspectives of sprouted grains: A comprehensive review. Food Science & Nutrition, 9(8), 4617–4628. https://dx.doi.org/10.1002/fsn3.2408
50. Johnson, B. J., Ribeiro, F. R. B., & Beckett, J. L. (2013). Application of growth technologies in enhancing food security and sustainability. Animal Frontiers, 3, 8–13. https:// dx.10.2527/af.2013-0018
51. Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., McKeever, D., Mutua, F., Young, J., McDermott, J., & Pfeiffer, D. U. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences, 110(21), 8399–8404. https:// dx.doi.org/10.1073/pnas.1208059110
52. Juárez, M., Lam, S., Bohrer, B. M., Dugan, M. E. R., Vahmani, P., Aalhus, J., Juárez, A., López-Campos, O., Prieto, N., & Segura, J. (2021). Enhancing the nutritional value of red meat through genetic and feeding strategies. Foods, 10(4), Article 872. https://dx.10.3390/foods10040872
53. Kaur, L., Mao, B., Beniwal, A. S., Abhilasha, Kaur, R., Chian, F, M., Singh, J. (2022). Alternative proteins vs animal proteins: The influence of structure and processing on their gastro-smal intestinal digestion. Trends in Food Science and Technology, 122, 275–286. https://dx.doi.org/10.1016/j.tifs.2022.02.021
54. Kim, W., Wang, Y., & Selomulya, C. (2020). Dairy and plant proteins as natural food emulsifiers. Trends in Food Science & Technology, 105, 261–272. https://dx.10.1016/j.tifs.2020.09.012
55. Kramer, R. M., Shende, V. R., Motl, N., Pace, C. N., & Scholtz, J. M. (2012). Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophysical Journal, 102(8), 07–15. https://dx.doi.org/10.1016/j.bpj.2012.01.060
56. Kumar, M., Tomar, M., Potkule, J., Verma, R., Punia, S., Mahapatra, A., Belwal, T., Dahuja, A., Joshi, S., Berwal, M. K., Satankar, V., Bhoite, A. G., Amarowicz, R., Kaur, C., & Kennedy, J.F. (2021). Advances in the plant protein extraction: mechanism and recommendations. Food Hydrocolloids, 115(2), 106595. https://dx.doi.org/10.1016/j.foodhyd.2021.10659
57. Kusumah, S. H., Andoyo1, R., & Rialita, T. (2020). Protein isolation techniques of beans using different methods: A review. Environmental Earth Sciences, 443, e012053. https://dx.doi.org/10.1088/1755-1315/443/1/012053
58. Lafarga, T., & Hayes, M. (2016). Bioactive protein hydrolysates in the functional food ingredient industry: overcoming current chalenges. Food Reviews International, 33(3), 217–246. https://dx.doi.org/10.1080/87559129.2016.1175013
59. Ligorio, C., & Mata, A. (2023). Synthetic extracellular matrices with function-encoding peptides. Nature Reviews Bioengineering, 1, 518–536. https://dx.doi.org/10.1038/s44222-023-00055-3
60. Lim, W.S., Kim, H.W., Lee, M.H., & Park, H.J. (2023). Improved printability of pea protein hydrolysates for protein-enriched 3D printed foods. Journal of Food Engineering, 350, 111502. https://dx.doi.org/10.1016/j.jfoodeng.2023.111502
61. Li, Y.-P., Sukmanov, V., Kang, Z. L., & Ma, H. (2020). Effect of soy protein isolate on the techno-functional properties and protein conformation of low-sodium pork meat batters treated by high pressure. Journal of Food Process Engineering, 43, e13343. https://dx.doi.org/10.1111/jfpe.13343
62. Llandes, C.B.M., Guzmán-Ortiz, F.A., Mora-Escobedo, R., Castro-Rosas, J., Delia, R.G.A., López-Perea, P., & Vargas-Torres, A. (2019). Effect of germination on antinutritional compounds of grains and seeds. In R.M. Escobedo, C. Martínez-Villaluenga, R. Reynoso-Camacho (Ed.), Germination: Types, Precess and Effects. (pp. 83–100). New York.
63. Małecki, J., Muszyński, S., & Sołowiej, B. G. (2021). Proteins in food systems—bionanomaterials, conventional and unconventional sources, functional properties, and development opportunities. Polymers (Basel), 13(15), Article 2506. https://dx.doi.org/10.3390/polym13152506
64. Mariotti, F. (2019). Animal and plant protein sources and cardiometabolic health. Advances in Nutrition, 10, 351–366. https://dx.doi.org/ 10.1093/advances/nmy110
65. Mariotti, F. (2020). Arginine supplementation and cardiometabolic risk. Current Opinion in Clinical Nutrition and Metabolic Care, 23(1), 29–34. https://dx.doi.org/10.1097/MCO.0000000000000612
66. McCarthy, A. L., O'Calaghan, Y. C., & O'Brien, N. M. (2013). Protein hydrolysates from agricultural crops—bioactivity and potential for functional food development. Agriculture. 3(1), 112–130. https://dx.doi.org/10.3390/agriculture3010112
67. Munthali, J., Nkhata, S. G., Masamba, K., Mguntha, T., Fungo, R., & Chirwa, R. (2022). Soaking beans for 12 h reduces split percent and cooking time regardless of type of water used for cooking. Heliyon, 8(9), 10561. https://dx.doi.org/10.1016/j.heliyon.2022.e10561
68. Muttenthaler, M., King, G. F., Adams, D. J., & Alewood, P. F. (2021). Trends in peptide drug discovery. Nature Reviews Drug Discovery, 20, 309–325. https://dx.doi.org/10.1038/s41573-020-00135-8
69. Nath, H., Samtiya, M., & Dhewa, T., (2022). Beneficial attributes and adverse effects of major plant-based foods anti-nutrients on health: A review. Human Nutrition & Metabolism, 28, 200–147. https://dx.doi.org/10.1016/j.hnm.2022.200147
70. Neji, C., Semwal, J., Kamani, M. H., Máthé, E., Sipos, P. (2022). Legume protein extracts: The relevance of physical processing in the context of structural, techno-functional and nutritional aspects of food development. Processes, 10(12), 2586. https://dx.doi.org/10.3390/pr10122586
71. Nelson, M. E., Hamm, M. W., Hu, F. B., Abrams, S. A., & Griffin, T. S. (2016). Alignment of healthy dietary patterns and environmental sustainability: A systematic review. Advances in Nutrition, 7(6), 1005–1025. https://dx.doi.org/10.3945/an.116.012567
72. Ohanenye, I. C., Tsopmo, A., Ejike, C. E. C. C., & Udenigwe, C. C. (2020). Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends in Food Science and Technology, 101, 213–222. https://dx.doi.org/10.1016/j.tifs.2020.05.003
73. Oh, J. Y., Je, J. G., Lee, H. G., Kim, E. A., Kang, S. I., Lee, J. S., & Jeon, Y. J. (2020). Anti-hypertensive activity of novel peptides identified from olive flounder (Paralichthys olivaceus) Surimi. Foods, 9(5), 647. https://doi.org/10.3390/foods9050647
74. Pavlicevic, M., Marmiroli, N., & Maestri, E. (2022). Immunomodulatory peptides—A promising source for novel functional food production and drug discovery. Peptides, 148, 170696. https://dx.doi.org/10.1016/j.peptides.2021.170696
75. Petroski, W., & Minich, D. M. (2020). Is there such a thing as “anti-nutrients”? A narrative review of perceived problematic plant compounds. Nutrients. 12(10), 2929. https://dx.doi.org/10.3390/nu12102929
76. Petrusán, J-I., Rawel, H., & Huschek, G. (2016). Protein-rich vegetal sources and trends in human nutrition. Current Topics in Peptide & Protein Research, 17, 1–19.
77. Popova, A., & Mihaylova, D. (2019). Antinutrients in plant-based foods: A review. The Open Biotechnology Journal, 13(1), 68–76. https://dx.doi.org/10.2174/1874070701913010068
78. Pramitha, J. L., Rana, S., Aggarwal, P. R., Ravikesavan, R., Joel, A. J., & Muthamilarasan, M. (2021). Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. Advances in Genetics, 107, 89–120. https://dx.doi.org/10.1016/bs.adgen.2020.11.003
79. Reijnders, L., & Soret, S. (2003). Quantification of the environmental impact of different dietary protein choices. The American Journal of Clinical Nutrition, 78(3), 664–668. https:// dx.doi.org/10.1093/ajcn/78.3.664S
80. Richter, C. K., Skulas-Ray, A. C., Champagne, C. M., & Kris-Etherton, P. M. (2015). Plant protein and animal proteins: do they differentialy affect cardiovascular disease risk? Advances in Nutrition, 6(6), 712–728. https://dx.doi.org/10.3945/an.115.00965
81. Rivera-Jiménez. J., Berraquero-García, C., Pérez-Gálvez, R., García-Moreno, P. J., Espejo-Carpio, F. J., Guadix, A., & Guadix, E. M. (2022). Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features and modulation mechanisms. Food & Function, 13, 12510–12540. https://doi.org/10.1039/D2FO02223K
82. Ruckmangathan, S., Ganapathyswamy, H., Sundararajan, A., Thiyagamoorthy, U., Green, R., & Subramani, T. (2022). Physico-chemical, structural, and functional properties of protein concentrate from selected pulses: A comparative study. Journal of Food Processing and Preservation, 19(2), 203–216. https://dx.doi.org/10.1111/jfpp.17169
83. Saeed, S. I., Mergani, A. E., Aklilu, E., & Kamaruzzaman, N. F. (2022). Antimicrobial peptides: bringing solution to the rising threats of antimicrobial resistance in livestock. Frontiers in Veterinary Science, 9, 851052. https://dx.doi.org/10.3389/fvets.2022.851052
84. Saetae, D., & Suntornsuk, W. (2011). Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified jatropha curcas seed cake. International Journal of Molecular Sciences, 12(1), 66–77. https://dx.doi.org/10.3390/ijms12010066
85. Saget, S., Costa, M., Santos, C. S., Vasconcelos, M. W., Gibbons, J., Styles, D., & Williams, M. (2021). Substitution of beef with pea protein reduces the environmental footprint of meat bals whilst supporting health and climate stabilisation goals. Journal of Cleaner Production, 297, Article 126447. https://dx.doi.org/10.1016/j.jclepro.2021.126447
86. Salazar-Villanea, S., Bruininx, E. M. A. M., Gruppen, H., Carré, P., Quinsac, A., & Van der Poel, A. F. B. (2017). Effects of toasting time on digestive hydrolysis of soluble and insoluble 00-rapeseed meal proteins. Journal of the American Oil Chemists' Society, 94(4), 619–630. https://dx.doi.org/10.1007/s11746-017-2960-8
87. Samaranayaka, A.G., & Li-Chan, E.C. (2011). Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. Journal of Functional Foods, 3, 229–254. https://doi.org/10.1016/j.jff.2011.05.006
88. Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production Processing and Nutrition, 2, 6. https://dx.doi.org/10.1186/s43014-020-0020-5
89. Santos, M. d., Rocha, D. A. V. F. d., Bernardinelli, O. D., Oliveira Júnior, F. D., de Sousa, D. G., Sabadini, E., da Cunha, R. L., Trindade, M. A., & Pollonio, M. A. R. (2022). Understanding the performance of plant protein concentrates as partial meat substitutes in hybrid meat emulsions. Food. 11, e3311. https://dx.doi.org/10.3390/foods11213311
90. Schaafsma, G. (2009). Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. European Journal of Clinical Nutrition, 63(10), 1161–1168. https://dx.doi.org/10.1038/ejcn.2009.56
91. Serikova, Y., Bousmanne, M., Drugmand, J.-C., Fouassier, M., Jeannin, L., & Schneider, Y.-J., (2015). Synthetic peptide matrices as support for stem cells culture. BMC Proceedings. 9, P50. https://dx.doi.org/10.1186/1753-6561-9-S9-P50
92. Sharma, K., Kaur, R., Kumar, S., Saini, R. K., Sharma, S., Pawde, S. V., & Kumar, V. (2023). Saponins: A concise review on food related aspects, applications and health implications. Food Chemistry Advances, 2, 100191. https://dx.doi.org/10.1016/j.focha.2023.100191
93. Skibska, A., & Perlikowska, R. (2021). Signal peptides – promising ingredients in cosmetics. Current Protein and Peptide Science, 22(10), 716–728. https://dx.doi.org/10.2174/1389203722666210812121129
94. Smetana, S., Profeta, A., Voigt, R., Kircher, C., & Heinz, V. (2021). Meat substitution in burgers: nutritional scoring, sensorial testing, and life cycle assessment. Future Foods, 4, Article 100042. https://dx.doi.org/0.1016/j.fufo.2021.100042
95. Song, M., Fung, T. T., Hu, F. B., Willett, W. C., Longo, V., Chan, A. T., & Giovannucci, E. L. (2016). Animal and plant protein intake and al-cause and cause-specific mortality: results from two prospective US cohort studies. JAMA Internal Medicine, 176 (10), 1453–1463. https://dx.doi.org/10.1001/jamainternmed.2016.4182
96. Thakur, P., Kumar, K., Ahmed, N., Chauhan, D., Eain Hyder Rizvi, Q. U., Jan, S., Singh, T. P., & Dhaliwal, H. S. (2021). Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Current Research in Food Science, 4, 917–925. https://dx.doi.org/10.1016/j.crfs.2021.11.019
97. Theurl, M. C., Lauk, C., Kalt, G., Mayer, A., Kaltenegger, K., Morais, T. G., Teixeira, R. F. M., Domingos, T., Winiwarter, W., Karl-Heinz Erb, K.-H., & Haberl, H. (2020). Food systems in a zero-deforestation world: dietary change is more important than intensification for climate targets in 2050. Science of the Total Environment, 735, Article 139353. https://dx.doi.org/10.1016/j.scitotenv.2020.139353
98. Thorning, T. K., Bertram, H. C., Bonjour, J. P., de Groot, L., Dupont, D., Feeney, E., Ipsen, R., Lecerf, J. M., Mackie, A., McKinley, M.C., Michalski, M.C., Rémond, D., Risérus, U., Soedamah-Muthu, S. S., Tholstrup, T., Weaver, C., Astrup, A., & Givens, I. (2017). Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. The American Journal of Clinical Nutrition, 105, 1033–1045. https://dx.doi.org/10.3945/ajcn.116.151548
99. Timby, N., Domellöf, E., Hernell, B., Lönnerdal, B. & Domellöf, M. (2014). Neurodevelopment, nutrition and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. American Journal of Clinical Nutrition, 99, 860–868.
100. Toldra, F., Reig, M., Aristoy, M. C., & Mora, L. (2018). Generation of bioactive peptides during food processing. Food Chemistry, 267, 395–404. https://dx.doi.org/10.1016/j.foodchem.2017.06.119
101. Tonheim, S. K., Nordgreen, A., Høgøy, I., Hamre, K., & Rønnestad, I. (2007). In vitro digestibility of water-soluble and water-insoluble protein fractions of some common fish larval feeds and feed ingredients. Aquaculture, 262(2–4), 426–435. https://dx.doi.org/10.1016/j.aquaculture.2006.10.030
102. Tripathi, A. K., & Vishwanatha, J. K. (2022). Role of anti-cancer peptides as immunomodulatory agents: potential and design strategy. Pharmaceutics, 14(12), 2686. https://dx.doi.org/10.3390/pharmaceutics14122686
103. Tyagi, A., Daliri, E. B. M., Ofosu, F. K., Yeon, S. J., & Oh, D. H. (2020). Food-derived opioid peptides in human health: A review. International Journal of Molecular Sciences, 21(22), 8825. https://dx.doi.org/10.3390/ijms21228825
104. Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., Wang, X., Wang, R., & Fu, C. (2022). Therapeutic peptides: Current applications and future directions. Signal Transduction and Targeted Therapy, 7(1), 48. https://dx.doi.org/10.1038/s41392-022-00904-4
105. Webb, M. J., Pendell, D. L., Harty, A. A., Salverson, R. R., Rotz, C. A., Underwood, K. R., Olson, K. C., & Blair, A. D. (2017). Influence of growth promoting technologies on animal performance, production economics, environmental impacts and carcass characteristics of beef. Meat and Muscle Biology, 1, 23–24. https://dx.10.221751/rmc2017.022
106. Westhoek, H., Lesschen, J. P., Rood, T., Wagner, S., De Marco, A., Murphy-Bokern, D., Leip, A., van Grinsven, H., Sutton, M. A., & Oenema, O. (2014). Food choices, health and environment: Effects of cutting Europe's meat and dairy intake. Global Environmental Change, 26, 196–205. https://dx.doi.org/10.1016/j.gloenvcha.2014.02.004
107. Willett, J. Rockström, B. Loken, M. Springmann, T. Lang, S. Vermeulen, et al. (2019). Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet, 393, 10170, 447–492. https://dx.doi.org/10.1016/S0140-6736(18)31788-4
108. Wood, J.D. (2017). Meat composition and nutritional value. In F. Toldra (Ed.), Lawrie's Meat Science (pp. 635–659). UK.
109. Wu, Y.-H. S., & Chen, Y.-C. (2022). Trends and applications of food protein-origin hydrolysates and bioactive peptides. Journal of Food and Drug Analysis, 30(2), 172–184. https://dx.doi.org/10.38212/2224-6614.3408
110. Ye, H., Tao, X., Zhang, W., Chen, Y., Yu, Q., & Xie, J. (2022). Food-derived bioactive peptides: production, biological activities, opportunities and chalenges. Journal of Future Foods, 2(4), 294–306. https://dx.doi.org/10.3390/ijms21228825
111. Zaky, A. A., Simal-Gandara, J., Eun, J. B., Shim, J. H., El-Aty, A. M. A. (2022). Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: a review. Frontiers in Nutrition, 8, 815640. https://dx.doi.org/10.3389/fnut.2021.815640
112. Zhang, Y. M., Ye, D. X., Liu, Y., Zhang, X. Y., Zhou, Y. L., Zhang, L., & Xin-Ling Yang, X. L. (2023). Peptides, new tools for plant protection in eco-agriculture. Advanced Agrochem, 2(1), 58–78. https://dx.doi.org/10.1016/j.aac.2023.01.003
Рецензия
Для цитирования:
Бычкова Е.С., Подгорбунских Е.М., Кудачева П.В., Еремеева Н.Б. Особенности производства и усвоения белков растительного и животного происхождения: обзор предметного поля. Хранение и переработка сельхозсырья. 2024;32(1). https://doi.org/10.36107/spfp.2024.1.473
For citation:
Bychkova E., Podgorbunskikh E., Kudacheva P., Eremeeva N. Features of Production and Digestion of Plant- and Animal-Derived Proteins: A Scoping Review. Storage and Processing of Farm Products. 2024;32(1). (In Russ.) https://doi.org/10.36107/spfp.2024.1.473