Application of Plant Emulsion Gels in the Technology of Gluten-Free Butter Cookies
https://doi.org/10.36107/spfp.2024.1.487
Abstract
Background: This study addresses the adverse effects of trans fatty acid isomers and gluten present in traditional types of enriched cookies. The urgency of this issue is driven by the need to develop recipes that replace solid animal fats and wheat flour with healthier alternatives.
Purpose: To develop a technology for producing gluten-free enriched cookies using an emulsion gel of walnut oil encapsulated in protein-polysaccharide shells, and alternative raw materials to reduce health risks.
Materials and Methods: Experimental cookie samples were prepared by substituting wheat flour with a gluten-free mix of amaranth flour, corn and potato starches, and replacing animal fat with walnut oil. The necessary structure in the dough was achieved through the introduction of a protein-polysaccharide mix, utilizing soy protein isolate and a blend of polysaccharides (gum arabic, sodium carboxymethyl cellulose, and pectin) to create stable capsules containing walnut oil. During the baking process, temperature changes were monitored using thermocouples installed both in the baking chamber and on the upper and lower surfaces of the dough samples. A vertical standard of 20 mm was placed next to the dough sample to measure the thickness (height) of the cookies. Signals from the thermocouples and the thickness readings were displayed on digital secondary devices, with numerical values recorded by a general video camera. Physicochemical and organoleptic properties of the cookies were studied, depending on the technology and recipe used.
Results: A technology for gluten-free cookies has been developed that incorporates the use of emulsion gels based on encapsulated walnut oil. The use of amaranth flour and starches has reduced the density and increased the moisture absorption of the finished products. Replacing animal fat with vegetable oil decreases the baking time by 14.3%, thereby enhancing productivity.
Conclusion: As a result of replacing fat and using emulsion gels, enriched cookies with improved organoleptic characteristics and a more balanced fatty acid composition have been created. The developed cookies can be recommended as a functional food product.
About the Authors
Valentina VaskinaBelarus
Alena Navazhylava
Belarus
Galina Dubtsova
Russian Federation
Evgeniy Rogozkin
Russian Federation
Elena Molchanova
Russian Federation
Yaroslav Kuznetsov
Russian Federation
References
1. Butin, S. A., Vaskina, V. A., & Shchegoleva, I. D. (2022). Vliyanie polisakharidnogo kompleksa v stenovom materiale emul’sionnogo gelya na kachestvo shokoladno-orekhovoi nachinki dlya konditerskikh izdelii [The effect of the polysaccharide complex in the emulsion gel wall mate¬rial on the quality of chocolate-nut filling for confectionery]. Khranenie i pererabotka sel’khozsyr’ya [Storage and Processing of Farm Products], 2, 173–187. (In Russ.). https://doi. org/10.36107/spfp.2022.303
2. Vaskina, V. A., Kandrokov, R. Kh., Bykov, A. A., & Navazhylava, A. S. (2022). Issledovanie vliyaniya sostava stenovogo materiala inkapsulirovannogo orehovogo masla na strukturu i kachestvo molochnoi pomadi [Study of the influence of the composition of the wall material of encapsulated nut butter on the structure and quality of milk fondant]. Izvestiya Natsional’noi akademii nauk Belarusi. Seriya agrarnykh nauk [Proceedings of the National Academy of Sciences of Belarus. Series of Agricultural Sciences], 60(3), 332-344. (In Russ.). DOI 10.29235/1817-7204-2022-60-3-332-344
3. Vaskina, V. A., & Weinshenker T. (2008). Vliyanie rastitelnih jirov na kachestvo pechenya [Influence of vegetable fats on the quality of biscuits]. Bakery products, 1, 56-57. (In Russ.).
4. Vaskina, V. A., Butin, S. A., Veretennikova, E. V., & Mukhamediev, Sh. A. (2016). Sozdanie emulsii lnyanogo masla_ inkapsulirovannogo belok_polisaharidnoi smesyu [Creation of an emulsion of linseed oil encapsulated with a protein-polysaccharide mixture]. Confectionery production, 5, 10-15. (In Russ.).
5. Renzyaeva, T.V., Tuboltseva, A.S., & Renzyaev, A.O. (2022). Muka razlichnih vidov v tehnologii muchnih konditerskih izdelii [Various flours in pastry production technology]. Food Processing: Techniques and Technology. 52(2):407–416. (In Russ.). https://doi.org/10.21603/2074-9414-2022-2-2373
6. Vaskina, V. A., & Dvoeglazova, A. A. (2019). Ispol’zovanie molochnoi syvorotki dlya sozdaniya v kreme emul’sion no-pennoi struktury [The use of milk whey to create an emulsion-foam structure in the cream]. Food Industry, 2 (40), 26-29. (In Russ.).
7. Vaskina, V. A., Panchenko, A. A. & Orekhova, S. S. (2017). Inkapsulyaciya kunjutnogo masla v jeleino_fruktovii marmelad [Encapsulation of sesame oil in fruit jelly]. Confectionery production, 2, 13–15. (In Russ.).
8. Mazhidova, N. K. (2016). Poluchenie tverdih jirov s minimalnim soderjaniem transizomerizovannih jirnih kislot [Obtaining solid fats with a minimum content of trans-isomerized fatty acids]. Fat and oil industry, 2, 26-29. (In Russ.).
9. Pochitskaya, I. M., & Roslik, V. L. (2016). Opredelenie transizomerov jirnih kislot v maslojirovoi produkcii s ispolzovaniem metoda infrakrasnoi spektrometrii [Determination of trans fatty acids in fat and oil products using infrared spectrometry]. Fat and oil industry, 5, 28-33. (In Russ.).
10. Yusupov, Sh. T., Safarov, M. M., Zaripova, M. A., & Tagoev. S. A. (1997). Teploemkost rastitelnih masel v shirokom intervale parametrov sostoyaniya [Heat capacity of vegetable oils in a wide range of state parameters]. Engineering Physics Journal, 5(70), 843. (In Russ.).
11. Atkinson, G. (2011). 12 Fats and oils as biscuit ingredients. In D. Manley (Eds.), Woodhead publishing series in food science, technology and nutrition, Manley’s technology of biscuits, crackers and cookies (рр. 160-180). Woodhead Publishing. https://doi.org/10.1533/9780857093646.2.160
12. Barragán-Martínez, L. P., Román-Guerrero, A., Vernon-Carter, E.J., & Alvarez-Ramirez, J. (2022). Impact of fat replacement by a hybrid gel (canola oil/candelilla wax oleogel and gelatinized corn starch hydrogel) on dough viscoelasticity, color, texture, structure, and starch digestibility of sugar-snap cookies. International Journal of Gastronomy and Food Science, 29, 100563. https://doi.org/10.1016/j.ijgfs.2022.100563
13. Batirel, S., Yilmaz, A. M., Sahin, А., Perakakis, N., Ozer, N. K., & Mantzoros, C. S. (2018). Antitumor and antimetastatic effects of walnut oil in esophageal adenocarcinoma cells. Clinical Nutrition, 37(6A), 2166-2171. https://doi.org/10.1016/j.clnu.2017.10.016
14. Cervera S.M., Salvador А., & Sanz Т. (2015). Cellulose ether emulsions as fat replacers in muffins: Rheological, thermal and textural properties. LWT - Food Science and Technology, V.63, I.2, 1083-1090. https://doi.org/10.1016/j.lwt.2015.04.067.
15. Chen, Q., Dong, L., Li, Y., Liu, Y., Xia, Q., Sang, S., ... & Liu, L. (2023). Research advance of non-thermal processing technologies on ovalbumin properties: The gelation, foaming, emulsification, allergenicity, immunoregulation and its delivery system application. Critical reviews in food science and nutrition, 1-22. https://doi.org/: 10.1080/10408398.2023.2179969
16. Chowdhury, B., Sharma, A., Akshit, F. N. U., Mohan, M. S., Salunke, P., & Anand, S. (2023). A review of oleogels applications in dairy foods. Critical Reviews in Food Science and Nutrition, 1-19. https://doi.org/10.1080/10408398.2023.2215871
17. Ekin, М., Kutlu, N., Meral, R., Ceylan, Z., & Cavidoglu, İ. (2021). A novel nanotechnological stranegy for obtaining fat-reduced cookies in bakery industry: Revealing of sensory, physical properties, and fatty acid profile of cookies prepared with oil-based nanoemulsions. Food Bioscience, 42, 101-184. https://doi.org/10.1016/j.fbio.2021.101184
18. Hadnađev, T. D., Hadnađev, M., Pojić, M., Rakita, S., & Krstonošić, V. (2015). Functionality of OSA starch stabilized emulsions as fat replacers in cookies. Journal of Food Engineering, 167 (B), 133-138. https://doi.org/10.1016/j.jfoodeng.2015.02.002
19. Gharaie, Z., Azizi, M. H., Barzegar, M., & Gavlighi, H. A. (2019). Gum tragacanth oil/gels as an alternative to shortening in cookies: Rheological, chemical and textural properties, LWT, 105, 265-271. https://doi.org/10.1016/j.lwt.2019.02.025
20. Jansens, K. J. A., Rombouts, I., Grootaert, C., Brijs, K., Van Camp, J., Van der Meeren, P., Rousseau, F., Schymkowitz, J., & Delcour, J. A. (2019,a). Rational Design of Amyloid-Like Fibrillary Structures for Tailoring Food Protein Techno-Functionality and Their Potential Health Implications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 84–105. Portico. https://doi.org/10.1111/1541-4337.12404
21. Jansens, K. J., Lambrecht, M. A., Rombouts, I., Monge Morera, M., Brijs, K., Rousseau, F., ... & Delcour, J. A. (2019,b). Conditions governing food protein amyloid fibril formation—Part I: Egg and cereal proteins. Comprehensive reviews in food science and food safety, 18(4), 1256-1276.
22. Kai, Y., Luo, X., Zhai, Y., Liu, J., Chen, K., Shao, X., Wu, X., Li, Y., & Chen, Z. (2021). Influence of sodium alginate on the gelatinization, rheological, and retrogradation properties of rice starch. International Journal of Biological Macromolecules, 185, 708-715. https://doi.org/10.1016/j.ijbiomac.2021.06.207
23. Kouhsari, F., Saberi, F., Kowalczewski, P. Ł., Lorenzo, J. M., & Kieliszek, M. (2022). Effect of the various fats on the structural characteristics of the hard dough biscuit. LWT, 159, 113-227. https://doi.org/10.1016/j.lwt.2022.113227
24. Lai, Q., Doan, N. T. T., & Nguyen, T. T. (2021). Influence of wall materials and homogenization pressure on microencapsulation of rice bran oil. Food and Bioprocess Technology, 14(10), 1885–1896. https://doi.org/10.1007/s11947-021-02685-0
25. Li, Q., He, Q., Xu, M., Li, J., Liu, X., Wan, Z., & Yang, X. (2020). Food-grade emulsions and emulsion gels prepared by soy protein–pectin complex nanoparticles and glycyrrhizic acid nanofibrils. Journal of Agricultural and Food Chemistry, 68(4), 1051–1063. https://doi.org/10.1021/acs.jafc.9b04957
26. Lokesh, K., Brennan, M., Brennan, C., & Zheng, H/ (2022). Influence of whey protein isolate on pasting, thermal, and structural characteristics of oat starch. Journal of Dairy Science, 105 (1), 56-71. https://doi.org/10.3168/jds.2021-20711
27. Martins, A. J., Cerqueira, F., Vicente, A. A., Cunha, R. L., Pastrana, L. M., & Cerqueira, M. A. (2022). Gelation behavior and stability of multicomponent sterol-based oleogels. Gels, 8(1), 37. https://doi.org/10.3390/gels8010037
28. Martins, A. J., Vicente, A. A., Cunha, R. L., & Cerqueira, M. A. (2018). Edible oleogels: An opportunity for fat replacement in foods. Food & Function, 9(2), 758–773. https://doi. org/10.1039/C7FO01641G
29. Mert, В., & Demirkesen, I. (2016). Reducing saturated fat with oleogel/shortening blends in a baked product. Food Chemistry, 199, 809-816. https://doi.org/10.1016/j.foodchem.2015.12.087
30. Oliveira, T. S., Silva, O. F., Kluczkovski, A. M., & Campelo, P. H. (2020). Potential use of vegetable proteins to reduce Brazil nut oil oxidation in microparticle systems, Food Research International, 137, 109526. https://doi.org/10.1016/j.foodres.2020.109526.
31. Paciulli, M., Littardi, P., Carini, E., Paradiso, V. M., Castellino, M., & Chiavaro, E. (2020). Inulin-based emulsion filled gel as fat replacer in shortbread cookies: Effects during storage. Lwt, 133, 109888.
32. Patel, A.R., Rajarethinem, P.S., Grędowska, A., Turhan, O., Lesaffer, A., De Vos, W.H., Van de Walle, D., & Dewettinck K. (2014). Edible applications of shellac oleogels: Spreads, chocolate paste and cakes. Food & Function, 5(4), 645-52. doi: 10.1039/c4fo00034j
33. Patel, A. R. (2015). Potential food applications of oleogels. In: Alternative routes to oil structuring. Springer Briefs in Food, Health, and Nutrition. Springer Cham. https://doi.org/10.1007/978-3-319-19138-6
34. Patel, A. R., & Dewettinck, K. (2016). Edible oil structuring: an overview and recent updates. Food & Function, 7, 20-29. DOI: 10.1039/c5fo01006c
35. Patel, A. R. (2017). Edible oil structuring. Concepts, methods and applications. The Royal Society of Chemistry. DOI: 10.1039/9781788010184
36. Perry, P. A., & Donald, A. M. (2002). The effect of sugars on the gelatinisation of starch. Carbohydrate Polymers, 49(2), 155-165. https://doi.org/10.1016/S0144-8617(01)00324-1
37. Perța-Crișan, S., Ursachi, C. Ș., Chereji, B. D., Tolan, I., & Munteanu, F. D. (2023). Food-Grade Oleogels: Trends in Analysis, Characterization, and Applicability. Gels, 9(5), 386. https://doi.org/10.3390/gels9050386
38. Ratnayake, W., Gagnon, C., & Dumais L. (2007). Trans fatty acid content of canadian margarines prior to mandatory trans fat labelling. Journal of the American Oil Chemists' Society, 84(9), 817-825. DOI: 10.1007/s11746-007-1112-y
39. Sanz, T., Fernández, M. A., Salvador, A., Muñoz, J., & Fiszman, S.M. (2005), Thermogelation properties of methylcellulose (MC) and their effect on a batter formula, Food Hydrocolloids, 19(1), 141-147. https://doi.org/10.1016/j.foodhyd.2004.04.023
40. Sanz, T., Salvador, A., Vélez, G., Muñoz, J., & Fiszman, S. M. (2005). Influence of ingredients on the thermo-rheological behaviour of batters containing methylcellulose. Food Hydrocolloids, 19(5), 869-877. https://doi.org/10.1016/j.foodhyd.2004.11.003
41. Sharma, A., Aratrika, R., & Singhal, R. S. (2021). A biorefinery approach towards valorization of spent coffee ground: Extraction of the oil by supercritical carbon dioxide and utilizing the defatted spent in formulating functional cookies. Future Foods, 4, 100090. https://doi.org/10.1016/j.fufo.2021.100090
42. Silva, R. C. D., Ferdaus, M. J., Foguel, A., & da Silva, T. L. T. (2023). Oleogels as a fat substitute in food: A current review. Gels, 9(3), 180. https://doi.org/10.3390/gels9030180
43. Srivastava, S., & Mishra, H. N. (2021). Development of microencapsulated vegetable oil powder-based cookies and study of its physicochemical properties and storage stability. LWT, 152, 112364. https://doi.org/10.1016/j.lwt.2021.112364
44. Starowicz, M., & Zieliński, H. (2019). How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Reviews International, 35(8), 707-725. https://doi.org/10.1080/87559129.2019.1600538
45. Tan, C., & McClements, D. J. (2021). Application of advanced emulsion technology in the food industry: A review and critical evaluation. Foods, 10(4), 812.
46. Tarancón, P., Fiszman, S.M., Salvador, A., & Tárrega. A. (2013). Formulating biscuits with healthier fats. Consumer profiling of textural and flavour sensations during consumption. Food Research International, 1(53), 134-140. https://doi.org/10.1016/j.foodres.2013.03.053
47. Torres, M. D., Moreira, R., Chenlo, F., & Morel, M. H. (2013). Effect of water and guar gum content on thermal properties of chestnut flour and its starch. Food Hydrocolloids, 33(2), 192-198. https://doi.org/10.1016/j.foodhyd.2013.03.004
48. Turasan, H., Sahin, S., & Sumnu, G. (2015). Encapsulation of rosemary essential oil. LWT-Food Science and Technology, 64(1), 112–119. https://doi.org/10.1016/j.lwt.2015.05.036
49. Yılmaz, E., & Öğütcü, M. (2014). Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. Journal of the American Oil Chemists' Society, 91(6), 1007-1017. DOI: 10.1007/s11746-014-2434-1
50. Yiu, C. C. Y., Liang, S. W., Mukhtar, K., Kim, W., Wang, Y., & Selomulya, C. (2023). Food Emulsion Gels from Plant-Based Ingredients: Formulation, Processing, and Potential Applications. Gels, 9(5), 366. https://doi.org/10.3390/gels9050366
51. Zhou, Y., Wang, D., Zhang, L., Du, X., & Zhou, X. (2008). Effect of polysaccharides on gelatinization and retrogradation of wheat starch. Food Hydrocolloids, 22 (4), 505-512. https://doi.org/10.1016/j.foodhyd.2007.01.010
Review
For citations:
Vaskina V., Navazhylava A., Dubtsova G., Rogozkin E., Molchanova E., Kuznetsov Ya. Application of Plant Emulsion Gels in the Technology of Gluten-Free Butter Cookies. Storage and Processing of Farm Products. 2024;32(1). (In Russ.) https://doi.org/10.36107/spfp.2024.1.487