Preview

Storage and Processing of Farm Products

Advanced search

Application of Microparticulates of Whey Proteins in the Technology of Semi-Hard Cheeses

https://doi.org/10.36107/spfp.2019.199

Abstract

This paper describes studies that confirm the possibility of using whey protein microparticulate in semi-hard cheese technology such as “Russian”. The introduction of a microparticulate into a normalized mixture changed its composition, which had a negative effect on the rennet coagulation process, increased the duration of coagulation and decreased clot strength. The relative value of the strength of the clot justifies the feasibility of using no more than 10% of the microparticulate in the composition of the normalized milk mixture. To obtain the standard duration of rennet coagulation, as well as condensation of the clot, the following technological parameters were proposed: clotting temperature 35°C, pH 6.4, the proportion of milk-clotting enzyme preparation 0.04%, calcium chloride - 40 g of anhydrous salt per 100 kg of normalized milk mixture. When forming a rennet, the particles of the microparticulate penetrate into its cells. In order to prevent microparticulate particles from entering serum, their average diameter should be in the range of 0.5 - 10 microns. The formation of the required range of microparticulate particle sizes is possible by a directed change in the technological parameters of microparticulation (temperature and intensity of mechanical stress). Based on data on the content of soluble nitrogen, the intensifying effect of microparticulate on the maturation of cheese is shown. The finished product was characterized by a higher mass fraction of moisture in comparison with the control. This fact, combined with a higher content of whey proteins, increases the yield of cheese. The developed technology of rennet semi-hard cheese “Russian” with a microparticulate whey protein allows you to replace some of the expensive raw components with a whey modification product, and therefore return the by-product to the main production.

About the Authors

E. I. Melnikova
Voronezh State University of Engineering Technology
Russian Federation


E. B. Stanislavskaya
Voronezh State University of Engineering Technology
Russian Federation


References

1. Горбатова К.К. Биохимия молока и молочных продуктов. СПб.: ГИОРД, 2015. 336 с.

2. Дымар О.В. Технологические аспекты использования микропартикулятов сывороточных белков при производстве молочных продуктов // Молочная промышленность. 2014. № 6. С. 19-21.

3. Калинин Д.В. Увеличение численности населения Земли как фактор развития цивилизации: проблема перенаселения // Электронный научный журнал «ГосРег». 2016. № 3. URL: http://gosreg.amchs.ru/pdffiles/17number/articles17/Kalinin_17.pdf (дата обращения: 20.08.2019).

4. Михалева Е. Молочная сыворотка. Потенциал развития Российского рынка // Молочная река. 2018. № 4. С. 14-18.

5. Мельникова Е.И., Станиславская Е.Б. Применение микропартикулята сывороточных белков в технологии кефира // Молочная промышленность. 2018. № 8. С. 49-51.

6. Меркулова Н.Г., Меркулов М.Ю., Меркулов И.Ю. Производственный контроль в молочной промышленности. Практическое руководство. СПб.: ГИОРД, 2017. 1022 с.

7. Рябцева С.А., Ганина В.И., Панова Н.М. Микробиология молока и молочных продуктов. СПб.: Лань, 2018. 192 с.

8. Скотт Р., Робинсон Р.К., Уилби Р.А. Производство сыра: научные основы и технологии. СПб.: Профессия, 2012. 468 с.

9. Смирнова И.А., Лобачева Е.М., Гулбани А.Д. Использование микропартикулята сывороточных белков в молочных продуктах // Молочная промышленность. 2014. № 6. С. 28-30.

10. МакСуини П.Л., Фокс П.Ф., Коттер П.Д., Эверетт Д.У. Сыр. Научные основы и технологии. В 2-х т. Том 2. Технологии основных групп сыров. М.: Профессия, 2019. 572 с.

11. МакСуини П.Л., Фокс П.Ф., Коттер П.Д., Эверетт Д.У. Сыр. Научные основы и технологии. В 2-х т. Том 1. Научные основы сыроделия. М.: Профессия, 2019. 556 с.

12. Тёпел А. Химия и физика молока. СПб.: Профессия, 2012. 824 с.

13. Ardö Y., McSweeney P.L.H., Magboul A.A.A., Upadhyay V.K., Fox P.F. Biochemistry of Cheese Ripening: Proteolysis // Cheese. Chemistry, Physics and Microbiology. Ed. by P.L.H. McSweeney, P.F. Fox, P.D. Cotter, D.W. Everett. Сhapter 18. London: Academic Press, 2017. P. 445-482. doi: https://doi.org/10.1016/B978-0-12-417012-4.00018-1

14. Barukčić I., Lisak Jakopović K., Božanić R. Whey and Buttermilk - Neglected Sources of Valuable Beverages // The Science of Beverages. Natural Beverages. Ed. by A.M. Grumezescu, A.M. Holban. Сhapter 8. Cambridge: Academic Press, 2019. P. 209-242. doi: https://doi.org/10.1016/B978-0-12-816689-5.00008-0

15. Torres I.C., Mutaf G., Larsen F.H., Ipsen R. Effect of hydration of microparticulated whey protein ingredients on their gelling behaviour in a non-fat milk system // Journal of Food Engineering. 2016. Vol. 184. P. 31-37. doi: https://doi.org/10.1016/j.jfoodeng.2016.03.018

16. Sturaro A., De Marchi M., Zorzi E., Cassandro M. Effect of microparticulated whey protein concentration and protein-to-fat ratio on Caciotta cheese yield and composition // International Dairy Journal. 2015. Vol. 48. P. 46-52. doi: https://doi.org/10.1016/j.idairyj.2015.02.003

17. Ipsen R. Microparticulated whey proteins for improving dairy product texture // International Dairy Journal. 2017. Vol. 67. P. 73-79. doi: https://doi.org/10.1016/j.idairyj.2016.08.009

18. Kelly Ph. Manufacture of Whey Protein Products: Concentrates, Isolate, Whey Protein Fractions and Microparticulated // Whey Proteins. From Milk to Medicine. Ed. by H.C. Deeth, N. Bansal. Сhapter 3. London: Academic Press, 2019. P. 97-122. doi: https://doi.org/10.1016/B978-0-12-812124-5.00003-5

19. Melnikova E.I., Stanislavskaia E.B., Losev A.N. Microparticulation of Caseic Whey to Use in Fermented Milk Production // Foods and Raw Materials. 2017. Vol. 5. No. 2. Р. 83-93.

20. Olivares M.L., Shahrivar K., de Vicente J. Soft lubrication characteristics of microparticulated whey proteins used as fat replacers in dairy systems // Journal of Food Engineering. 2019. Vol. 245. P. 157-165. doi: https://doi.org/10.1016/j.jfoodeng.2018.10.015

21. Ramos O.L., Pereira R.N., Rodrigues R.M., Teixeira J.A., Vicente A.A., Malcata F.X. Whey and Whey Powders: Production and Uses // Encyclopedia of Food and Health. Ed. by B. Caballero, P.M. Finglas, F. Toldrá. Oxford: Academic Press, 2016. P. 498-505. doi: https://doi.org/10.1016/B978-0-12-384947-2.00747-9

22. Torres I.C., Amigo J.M., Knudsen J.Ch., Tolkach A. Rheology and microstructure of low-fat yoghurt produced with whey protein microparticles as fat replacer // International Dairy Journal. 2018. Vol. 81. P. 62-71. doi: https://doi.org/10.1016/j.idairyj.2018.01.004

23. Ahmad T., Aadil R.M., Ahmed H., Cruz A.G. Treatment and utilization of dairy industrial waste: A review //. 2019. P. 361-372. doi:

24. Di Cagno R., De Pasquale I., De Angelis M., Buchin S., Rizzello C.G., Gobbetti M. Use of microparticulated whey protein concentrate, exopolysaccharide-producing Streptococcus thermophilus, and adjunct cultures for making low-fat Italian Caciotta-type cheese // Journal of Dairy Science. 2014. Vol. 97(1). P. 72-84. doi: https://doi.org/10.3168/jds.2013-7078

25. Janser R., Domingues M.A., Ohara A., Okuro P., dos Santos Aguilar J., Brexó R., Sato H. Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications // Food Structure. 2017. Vol. 14. P. 17-29. doi: https://doi.org/10.1016/j.foostr.2017.05.004


Review

For citations:


Melnikova E.I., Stanislavskaya E.B. Application of Microparticulates of Whey Proteins in the Technology of Semi-Hard Cheeses. Storage and Processing of Farm Products. 2019;(4):129-140. (In Russ.) https://doi.org/10.36107/spfp.2019.199

Views: 525


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)