Enzymative Activity of Acinetobacter Radioresistens during Cultivation on Secondary Plant Raw Materials
https://doi.org/10.36107/spfp.2024.1.551
Abstract
Introduction: In recent years, there has been a strong focus on reducing and recycling food waste. The rich chemical composition and availability make rapeseed cake and soybean meal promising sources of nutrients. These secondary raw materials can be used for cultivating microorganisms to obtain valuable biologically active compounds and products with high added value.
Purpose: To study the enzymatic activity of the bacterial isolate Acinetobacter radioresistens when cultivated on secondary plant materials, and also to analyze the sugar content and fatty acid composition during the cultivation process.
Materials and Methods: The objects of the study were rapeseed cake, soybean meal and a bacterial isolate of Acinetobacter radioresistens isolated from wheat bran. Cultivation of A. radioresistens on secondary plant materials was carried out by deep method at a hydromodulus of 1:9, temperature (28±1) ℃ and a shaker platform rotation speed of 180 rpm for 6 days. Sampling was carried out on days 1, 2, 3 and 6 of cultivation. In samples of plant-microbial biomass, consisting of fermented samples of rapeseed cake or soybean meal and A. radioresistens cells, the pH (potentiometric method) and fatty acid profile (gas chromatography method) were determined. To determine protein concentration (by the Lowry method), proteolytic and phytase activities (photocolorimetric method), sugar and glucosamine content (by high-performance liquid chromatography), we used the supernatant obtained after centrifugation of plant-microbial biomass at a rotor speed of 8000 rpm for 20 min.
Results: When A. radioresistens was cultivated on rapeseed cake, the activity of alkaline proteases was more pronounced. The maximum proteolytic activity was (133.71±6.69) units/cm3 on day 1 of cultivation. When A. radioresistens was cultivated on soybean meal, the activity of neutral proteases predominated. The maximum proteolytic activity was (121.00±6.05) units/cm3 on the 3rd day of cultivation. In addition to proteolytic activity, the bacterial isolate of A. radioresistens on soybean meal exhibited phytase activity. In the selected culture fluid samples, the content of glucosamine and other sugars was higher when soybean meal was used as a substrate. As a result of the analysis of fatty acid composition, fatty acids with an alkyl chain length from C8 to C24 carbon atoms were identified.
Conclusion: Experimental data obtained from the cultivation of A. radioresistens on secondary plant materials can be used to obtain biologically active compounds and feed products for farm animals, and are also of interest to the processing industry in developing methods for highly efficient processing of plant waste using biotechnological processes.
About the Authors
Daria BelovaRussian Federation
Anastasia Printseva
Russian Federation
Anatoly Nepomnyashiy
Russian Federation
Pavel Sorokoumov
Russian Federation
Natalya Sharova
Russian Federation
References
1. Anashkina, I. I., Kravtsova, E. V., & Portnova, A. V. (2023). Polucheniye mikrobnykh proteoliticheskikh preparatov dlya pererabotki otkhodov zernovogo proizvodstva [Obtaining microbial proteolitic preparations for recycling grain productionwaste]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Khimicheskaya tekhnologiya i biotekhnologiya [PNRPU Bulletin. Chemical Technology and Biotechnology], (2), 64–80.
2. Lantseva, N. N., Smirnov, P. N., Shvydkov, A. N., Riabukha, L. A., Usova, T. V., & Martyshchenko, A. E. (2016). Sravnitel’naya biologicheskaya kharakteristika MKD raznykh seriy, prigotovlennykh k ispol’zovaniyu v broylernom ptitsevodstve [Comparative biological characteristics of sour-milk feeding additive of different types for broilers poultry farming]. Vestnik NGAU (Novosibirskiy gosudarstvennyy agrarnyy universitet) [Bulletin of NSAU (Novosibirsk State Agrarian University)], 4(41), 40–47.
3. Sverdlova, O. P., Sharova, N. Yu., Prichepa, A. O., Loskutov, S. I., & Printseva A. A. (2022). Identifikatsiya aborigennoy mikroflory pshenichnykh otrubey: bakterial’nyye izolyaty - potentsial’nyye promyshlennyye produtsenty [Identification of native microflora of wheat bran: Bacterial isolates are potential industrial producers]. Khraneniye i pererabotka sel’khozsyr’ya [Storage and Рrocessing of Farm Products], (3), 78–92. https://doi.org/10.36107/spfp.2022.294
4. Arrutia, F., Binner, E., Williams, P., & Waldron, K. W. (2020). Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends in Food Science & Technology, 100, 88–102. https://doi.org/10.1016/j.tifs.2020.03.044
5. Barut, M., Tansi, L. S., Diraz-Yıldırım, E., & Karaman, S. (2022). Seed and fruit fatty acid compositions of Crambe orientalis and Crambe tataria oils collected from three different provinces in Turkey. Journal of Agriculture and Nature, 25(Suppl 2), 452–461. https://doi.org/10.18016/ksutarimdoga.vi.1004020
6. Bond, J. S. (2019). Proteases: History, discovery, and roles in health and disease. Journal of Biological Chemistry, 294(5), 1643–1651. https://doi.org/10.1074/jbc.TM118.004156
7. Buck, S. P., Pegg, R. B., & Tyl, C. (2022). Oxidative stability of oil obtained from a low-erucic acid pennycress (Thlaspi arvense L.) mutant with potential for food use. European Journal of Lipid Science and Technology, 124(7), 2200053. https://doi.org/10.1002/ejlt.202200053
8. Dahal, U., Paul, K., & Gupta, S. (2023). The multifaceted genus Acinetobacter: From infection to bioremediation. Journal of Applied Microbiology, 134(8), 1–18. https://doi.org/10.1093/jambio/lxad145
9. de Oliveira Costa, L. E., Ribeiro Corrêa, T. L., Teixeira, J. A., de Araújo, E. F., & de Queiroz, M. V. (2018). Endophytic bacteria isolated from Phaseolus vulgaris produce phytases with potential for biotechnology application. Brazilian Journal of Biological Sciences, 5(11), 657–671. https://doi.org/10.21472/bjbs.051105
10. Gocheva, Y., Engibarov, S., Lazarkevich, I., & Eneva, R. (2023). Phytases – Types, sources, and factors affecting their activity. Acta Microbiologica Bulgarica, 39(3), 249–263. https://doi.org/10.59393/amb23390305
11. Joudaki, H., Aria, N., Moravej, R., Yazdi, M. R., Emami‑Karvani, Z., & Hamblin, M. R. (2023). Microbial phytases: Properties and applications in the food industry. Current Microbiology, 80, 374. https://doi.org/10.1007/s00284-023-03471-1
12. Konuskan, D. B., Arslan, M., & Oksuz, A. (2019). Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi Journal of Biological Sciences, 26(2), 340–344. https://doi.org/10.1016/j.sjbs.2018.04.005
13. Liu, L., Liu, Y., Shin, H.-d., Chen, R., Li, J., Du, G., & Chen, J. (2013) Microbial production of glucosamine and N-acetylglucosamine: Advances and perspectives. Applied Microbiology and Biotechnology, 97, 6149–6158. https://doi.org/10.1007/s00253-013-4995-6
14. Liu, Y., Wang, W., Shah, S. B., Zanaroli, G., Xu, P., & Tang H. (2020). Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Applied Microbiology and Biotechnology, 104(1), 427–437. https://doi.org/10.1007/s00253-019-10271-w
15. Ohmori, H., Fujii, K., Kadochi, Y., Mori, S., Nishiguchi, Y., Fujiwara, R., Kishi, S., Sasaki, T., & Kuniyasu, H. (2017). Elaidic acid, a trans-fatty acid, enhances the metastasis of colorectal cancer cells. Pathobiology, 84(3), 144–151. https://doi.org/10.1159/000449205
16. Ozdal, T., & Omeroglu, P. Y. (2021). Investigation of fatty acid composition including trans fatty acids and erucic acid in selected salty snack foods. Journal of Food Processing and Preservation, 45(10), e15791. https://doi.org/10.1111/jfpp.15791
17. Pirog, T. P., Lutsai, D. A., & Muchnyk, F. V. (2021). Biotechnological potential of the Acinetobacter genus bacteria. Mikrobiolohichnyi Zhurnal, 83(3), 92–109. https://doi.org/10.15407/microbiolj83.03.092
18. Sadh, P. K., Kumar, S., Chawla, P., & Duhan, J. S. (2018). Fermentation: A boon for production of bioactive compounds by processing of food industries wastes (by-products). Molecules, 23(10), 2560. https://doi.org/10.3390/molecules23102560
19. Senyilmaz-Tiebe, D., Pfaff, D. H., Virtue, S., Schwarz, K. V., Fleming, T., Altamura, S., Muckenthaler, M. U., Okun, J. G., Vidal-Puig, A., Nawroth, P., & Teleman, A. A. (2018). Dietary stearic acid regulates mitochondria in vivo in humans. Nature Communications, 9, 3129. https://doi.org/10.1038/s41467-018-05614-6
20. Soghandi, B., & Salimi, F. (2023). Study on amendment of rapeseed meal, soybean meal, and NPK fertilizer as biostimulants in bioremediation of diesel-contaminated soil by autochthonous microorganisms. Soil and Sediment Contamination: An International Journal, 1–21. https://doi.org/10.1080/15320383.2023.2211676
21. Solanki, P., Putatunda, C., Kumar, A., Bhatia, R., & Walia, A. (2021). Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech, 11, 428. https://doi.org/10.1007/s13205-021-02928-z
22. Song, P., Zhang, X., Wang, S., Xu, W., Wang, F., Fu, R., & Wei, F. (2023). Microbial proteases and their applications. Frontiers in Microbiology, 14, 1236368. https://doi.org/10.3389/fmicb.2023.1236368
23. Sousa, D., Salgado, J. M., Cambra-López, M., Dias, A., & Belo, I. (2023). Biotechnological valorization of oilseed cakes: Substrate optimization by simplex centroid mixture design and scale-up to tray bioreactor. Biofuels, Bioproducts and Biorefining, 17(1), 121–134. https://doi.org/10.1002/bbb.2428
24. Sousa, D., Salgado, J. M., Cambra-López, M., Dias, A., & Belo, I. (2023). Bioprocessing of oilseed cakes by fungi consortia: Impact of enzymes produced on antioxidants release. Journal of Biotechnology, 364, 5–12. https://doi.org/10.1016/j.jbiotec.2023.01.008
25. Sousa, D., Simões, L., Oliveira, R., Salgado, J. M., Cambra-López, M., Belo, I., & Dias, A. (2023). Evaluation of biotechnological processing through solid-state fermentation of oilseed cakes on extracts bioactive potential. Biotechnology Letters, 45, 1293–1307. https://doi.org/10.1007/s10529-023-03417-4
26. Tatta, E. R., Imchen, M., Moopantakath, J., & Kumavath, R. (2022). Bioprospecting of microbial enzymes: current trends in industry and healthcare. Applied Microbiology and Biotechnology, 106, 1813–1835. https://doi.org/10.1007/s00253-022-11859-5
27. Thapa, S., Li, H., OHair, J., Bhatti, S., Chen, F.- C., Nasr, K. A., Johnson, T., & Zhou, S. (2019). Biochemical characteristics of microbial enzymes and their significance from industrial perspectives. Molecular Biotechnology, 61, 579–601. https://doi.org/10.1007/s12033-019-00187-1
28. van Rooijen, M. A., & Mensink, R. P. (2020). Palmitic acid versus stearic acid: Effects of interesterification and intakes on cardiometabolic risk markers – A systematic review. Nutrients, 12(3), 615. https://doi.org/10.3390/nu12030615
29. Wang, S., Hu, Y., & Wang, J. (2018). Biodegradation of typical pharmaceutical compounds by a novel strain Acinetobacter sp. Journal of Environmental Management, 217, 240–246. https://doi.org/10.1016/j.jenvman.2018.03.096
30. Wongsirichot, P., Gonzalez-Miquel, M., & Winterburn, J. (2022). Recent advances in rapeseed meal as alternative feedstock for industrial biotechnology. Biochemical Engineering Journal, 180, 108373. https://doi.org/10.1016/j.bej.2022.108373
31. Yang, Y., Wang, J., Yao, M., Li, X., Lu, X., He, J., Zhang, H., Tian, B., & Zhou, J. (2023). An update on the review of microbial synthesis of glucosamine and N-acetylglucosamine. World Journal of Microbiology and Biotechnology, 39, 93. https://doi.org/10.1007/s11274-023-03531-5
32. Yang, Z. -H., Pryor, M., Noguchi, A., Sampson, M., Johnson, B., Pryor, M., Donkor, K., Amar, M., & Remaley, A. T. (2019). Dietary palmitoleic acid attenuates atherosclerosis progression and hyperlipidemia in low-density lipoprotein receptor-deficient mice. Molecular Nutrition & Food Research, 63(12), 1900120. https://doi.org/10.1002/mnfr.201900120
Supplementary files
![]() |
1. Фитазная активность A. radioresistens в процессе культивирования на соевом шроте | |
Subject | ||
Type | Результаты исследования | |
Download
(18KB)
|
Indexing metadata ▾ |
Review
For citations:
Belova D., Printseva A., Nepomnyashiy A., Sorokoumov P., Sharova N. Enzymative Activity of Acinetobacter Radioresistens during Cultivation on Secondary Plant Raw Materials. Storage and Processing of Farm Products. 2024;32(1). (In Russ.) https://doi.org/10.36107/spfp.2024.1.551