The Intensification of Vacuum Freeze Drying of Viburnum Fruits Utilizing Low-Temperature Plasma Pre-Treatment
https://doi.org/10.36107/spfp.2024.2.560
Abstract
Introduction: The duration of classical vacuum freeze drying during the processing of whole wild berries can reach more than 120 hours directly affecting the availability of the final product to consumers. In this regard, the search for solutions to reduce the duration of the vacuum freeze drying process while maintaining the high quality of the resulting product is an urgent production task.
Purpose: Intensification of vacuum freeze drying of viburnum fruits due to the formation of additional channels on the surface shell using pre-treatment with low-temperature plasma to reduce the total drying time of this type of raw material.
Materials and Methods: Low-current spark and arc discharge modes supported by thermionic emission were chosen as a variation of low-temperature plasma treatment. Viburnum fruits dehydrated by vacuum freeze drying were analyzed for microstructural changes, drying kinetics and quality indicators. Low-temperature plasma treatment was carried out on the installation in the field strength mode of 8 kV/cm and 6 kV/ cm and the discharge current values of 1 mA and 10 mA for spark and arc modes, respectively.
Results: It is shown that pre-treatment with low-temperature plasma in the arc discharge mode significantly intensifies the process of vacuum freeze drying of fruits due to the channels formed on the surface of the integument. Pre-treatment with low-temperature plasma made it possible to increase the drying speed by three times and reduce the overall duration of the process. The quality indicators of dehydrated viburnum fruits with pre-treatment with low-temperature plasma remained at a high level.
Conclusion: Current study demonstrates the efficiency of using low-temperature plasma treatment at the stage of preparing fruit and berry raw materials for vacuum freeze drying processes. The selected low-current discharge mode allows to reduce the total material and energy costs. This work contributes to the development of electrophysical methods for the intensification of complex heat and mass transfer processes.
About the Authors
Oksana Ivanovna AndreevaRussian Federation
Ivan Alexandrovich Shorstky
Russian Federation
References
1. Alifakı Y. Ö., Şakıyan Ö. & Isci, A. (2022). Investigation of storage stability, baking stability, and characteristics of freeze-dried cranberrybush (Viburnum opulus L.) fruit microcapsules. Food and Bioprocess Technology, 15(5), 1115-1132. https://doi.org/10.1007/s11947-022-02805-4
2. Ashtiani S. H. M., Aghkhani M. H., Feizy, J. & Martynenko, A. (2023). Effect of cold plasma pretreatment coupled with osmotic dehydration on drying kinetics and quality of mushroom (Agaricus bisporus). Food and Bioprocess Technology, 16(12), 2854-2876. DOI: 10.1016/j.ifset.2020.102381
3. Dziki D. (2020). Recent trends in pretreatment of food before freeze-drying. Processes, 8(12), 1661. DOI: 10.3390/pr8121661
4. Giancaterino M., Werl, C. & Jaeger H. (2024). Evaluation of the quality and stability of freeze-dried fruits and vegetables pre-treated by pulsed electric fields (PEF). LWT, 191, 115651.https://doi.org/10.1016/j.lwt.2023.115651
5. Grimi, N. Mamouni, F., Lebovka N., Vorobiev, E. & Vaxelaire, J. (2010). Acoustic impulse response in apple tissues treated by pulsed electric field. Biosystems engineering, 105(2), 266-272.https://doi.org/10.1016/j.biosystemseng.2009.11.005
6. Kajszczak D., Zakłos-Szyda, M. & Podsędek, A. (2020). Viburnum opulus L.—A review of phytochemistry and biological effects. Nutrients, 12(11), 3398.https://doi.org/10.3390/nu12113398
7. Krzykowski A., Dziki D., Rudy S., Gawlik-Dziki U., Polak R. & Biernacka B. (2018). Effect of pre-treatment conditions and freeze-drying temperature on the process kinetics and physicochemical properties of pepper. Lwt, 98, 25-30.https://doi.org/10.1016/j.lwt.2018.08.022
8. Li J., Li Z., Ma Q. & Zhou Y. (2023). Enhancement of anthocyanins extraction from haskap by cold plasma pretreatment. Innovative Food Science & Emerging Technologies, 84, 103294.https://doi.org/10.1016/j.ifset.2023.103294
9. Ashtiani S. H. M., Rafiee M., Morad M. M., Khojastehpour M., Khani M. R., Rohani, A., & Martynenko, A. (2020). Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science & Emerging Technologies, 63, 102381. https://doi.org/10.1016/j.ifset.2020.102381
10. Obajemihi O. I., Cheng, J. H. & Sun D. W. (2024). Novel cold plasma functionalized water pretreatment for improving drying performance and physicochemical properties of tomato (Solanum lycopersicum L.) fruits during infrared-accelerated pulsed vacuum drying. Journal of Food Engineering, 112050. https://doi.org/10.1016/j.jfoodeng.2024.112050
11. Sette P., Salvatori D., & Schebor C. (2016). Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air-and freeze-drying. Food and bioproducts processing, 100, 156-171. https://doi.org/10.1016/j.fbp.2016.06.018
12. Sosnin M. D., & Shorstkii I. A. (2020). Microplasma pretreatment of mango fruits during freeze drying with thermoelectric emission. https://doi.org/https://doi.org/10.21603/2074
13. Teng X., Zhang M., Devahastin S. & Yu D. (2020). Establishment of Lower Hygroscopicity and Adhesion Strategy for Infrared-Freeze-Dried Blueberries Based on Pretreatments Using CO 2 Laser in Combination with Ultrasound. Food and Bioprocess Technology, 13, 2043-2053. https://doi.org/10.1007/s11947-020-02543-5
14. Zhang C., Lyu X., Arshad R. N., Aadil R. M., Tong Y., Zhao W. & Yang, R. (2023). Pulsed electric field as a promising technology for solid foods processing: A review. Food Chemistry, 403, 134367. https://doi.org/10.1016/j.foodchem.2022.134367
15. Zhang L., Liao L., Qiao Y., Wang C., Shi D., An K. & Hu J. (2020). Effects of ultrahigh pressure and ultrasound pretreatments on properties of strawberry chips prepared by vacuum-freeze drying. Food Chemistry, 303, 125386. https://doi.org/10.1016/j.foodchem.2019.125386.
16. Alekseenko, E. V., Karimova, N. YU. & Cvetkova, A. A. (2023). Sposoby pererabotki yagod cherniki: sovremennoe sostoyanie i perspektivy razvitiya. Hranenie i pererabotka sel'hozsyr'ya, [Methods of processing blueberries: current state and development prospects. Storage and processing of agricultural raw materials], (1).
17. Guseynova B. M., Asabutaev I. H., Daudova T. I. Assessment of apricots suitability for shock freezing according to physical and technological quality indicators (2021). Journal of International Academy of Refrigeration, (1), 74–83. DOI: 10.17586/1606 4313 2021 20 1-74-83
18. Kurdyukov E. E., Mitishev, A. V., Vodop'yanova, O. A., SHeludyakova, YU. B., & Finaenova, N. I. (2021). Spektrofotometricheskaya metodika kolichestvennogo opredeleniya summy antocianov v syr'e evterpy ovoshchnoj (Euterpe oleracea). Vestnik Moskovskogo universiteta. Seriya 2. Himiya, [A spectrophotometric technique for the quantitative determination of the amount of anthocyanins in the raw materials of vegetable euterpe (Euterpe oleracea). Bulletin of the Moscow University. Series 2. Chemistry], 62(6), 523-525.
19. Sosnin M.D., Shorstkii I.A (2023). Cold Atmospheric Gas Plasma Processing of Apple Slices. Food Processing: Techniques and Technology, 53(2), 368-383. https://doi.org/10.21603/2074-9414-2023-2-2442
20. Sycheva, O. V., SHlykov, S. N., & Omarov, R. S. (2019). Nauchnye principy sozdaniya pishchevyh produktov dlya personalizirovannogo pitaniya v sootvetstvii s koncepciej razvitiya perspektivnogo rynka «FoodNet». Pishchevaya industriya, [Scientific principles of creating food products for personalized nutrition in accordance with the concept of developing a promising market "FoodNet". Food industry], (1 (39)), 36-37.
21. Tihonov S. YU. & Tipsina N. N. (2017). Ispol'zovanie suhogo syr'ya kaliny v konditerskih izdeliyah s povyshennoj pishchevoj cennost'yu. Nauka i obrazovanie: opyt, problemy, perspektivy razvitiya: sb. tr.Krasnoyarsk: Izd-vo Krasnoyarskogo gos. agrar. un-ta, [The use of dry viburnum raw materials in confectionery products with increased nutritional value. Science and education: experience, problems, development prospects: collection of tr.Krasnoyarsk: Publishing House of the Krasnoyarsk State Agrarian University. un-ta], 95-97.
22. SHestopalova I. A. & Uvarova N. A. (2012). Vliyanie ekstraktov dikorastushchih plodov i yagod na cvet rublenyh polufabrikatov iz myasa pticy. Nauchnyj zhurnal NIU ITMO. Seriya «Processy i apparaty pishchevyh proizvodstv», [The effect of extracts of wild fruits and berries on the color of chopped semi-finished poultry meat. Scientific journal of the ITMO Research Institute. The series "Processes and devices of food production"], (1), 53.
Supplementary files
![]() |
1. Неозаглавлен | |
Subject | ||
Type | Other | |
Download
(13KB)
|
Indexing metadata ▾ |
|
2. Графики | |
Subject | ||
Type | Исследовательские инструменты | |
View
(53KB)
|
Indexing metadata ▾ |
|
3. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
View
(17KB)
|
Indexing metadata ▾ |
![]() |
4. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(121KB)
|
Indexing metadata ▾ |
![]() |
5. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(171KB)
|
Indexing metadata ▾ |
![]() |
6. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(91KB)
|
Indexing metadata ▾ |
![]() |
7. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(51KB)
|
Indexing metadata ▾ |
|
8. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
View
(13KB)
|
Indexing metadata ▾ |
Review
For citations:
Andreeva O.I., Shorstky I.A. The Intensification of Vacuum Freeze Drying of Viburnum Fruits Utilizing Low-Temperature Plasma Pre-Treatment. Storage and Processing of Farm Products. 2024;32(2):89-98. (In Russ.) https://doi.org/10.36107/spfp.2024.2.560