Preview

Хранение и переработка сельхозсырья

Расширенный поиск

Волновые и полевые воздействия в пищевых технологиях: обзор предметного поля

https://doi.org/10.36107/spfp.2024.3.566

Аннотация

Введение: Высокая конкуренция в пищевой промышленности требует интенсификации технологических процессов, улучшения качества и безопасности продукции, расширения ассортимента и снижения себестоимости. Одним из перспективных решений является применение волновых и полевых воздействий на разных этапах производства. За последние годы интерес к этим методам значительно вырос благодаря доступности необходимого оборудования.

Цель: Систематизация данных о применении волновых и полевых воздействий для интенсификации технологических процессов и повышения качества продукции, сравнение их эффективности, выявление преимуществ и недостатков по сравнению с традиционными методами переработки.

Материалы и методы: В обзор включены публикации на русском и английском языках, индексируемые в Scopus, Web of Science, eLibrary (РИНЦ) и других базах данных. Период охвата – с 1963 по 2024 годы. Методология обзора основывалась на протоколе PRISMA. Исключены данные по применению воздействий для активации дрожжевых популяций, опубликованные ранее.

Результаты: Проанализированы волновые и полевые воздействия, включая обработку звуком различных частот, электромагнитными излучениями и комбинированные методы. Описаны цели обработки в различных пищевых отраслях и режимы проведения (длительность, температура, интенсивность). Показаны преимущества таких обработок: сокращение времени и затрат на стадии процессов, снижение энергопотребления, уменьшение отходов, снижение термического воздействия, повышение проницаемости мембран, эффективность экстракции, улучшение сушки, консервирования и пастеризации. Отмечены улучшения в органолептике, стойкости к окислению и подавлении нежелательных процессов. Однако выявлены недостатки: потеря биологически активных веществ, ухудшение вкусовых характеристик, неравномерность обработки и необходимость специализированного оборудования.

Выводы: Универсальный метод обработки, подходящий для всех стадий и масштабов производства, отсутствует. Рациональный выбор обработки должен учитывать как положительные, так и отрицательные эффекты, влияние на состав продукции и экономическую целесообразность применения.

Об авторах

Дмитрий Валерьевич Карпенко
Российский биотехнологический университет
Россия

Кафедра технологии бродильных производств и виноделия ФГБОУ ВО "РОСБИОТЕХ"

д.т.н., профессор, профессор кафедры

SPIN-код: 7628-4311



Артём Геннадиевич Гришин
Российский биотехнологический университет
Россия

Кафедра технологии бродильных производств и виноделия ФГБОУ ВО "РОСБИОТЕХ"

старший преподаватель



Анна Дмитриевна Заграничная
Российский биотехнологический университет
Россия

Кафедра технологии бродильных производств и виноделия ФГБОУ ВО "РОСБИОТЕХ"

аспирантка



Максим Геннадьевич Гордюшин
Российский биотехнологический университет
Россия

Кафедра технологии бродильных производств и виноделия ФГБОУ ВО "РОСБИОТЕХ"

магистрант II курса



Елизавета Михайловна Смирнова
Российский биотехнологический университет
Россия

Кафедра технологии бродильных производств и виноделия ФГБОУ ВО "РОСБИОТЕХ"

магистрант I курса



Список литературы

1. Алексеенко, Е. В., Каримова, Н. Ю., & Цветкова, А. А. (2023). Способы переработки ягод черники: современное состояние и перспективы развития. Хранение и переработка сельхозсырья, (1), 22-44. https://doi.org/10.36107/spfp.2023.353

2. Бабакина, М. В., Михайлюта, Л. В., Першакова, Т. В., Купин, Г. А., & Самойленко, М. В. (2021). Натамицин и электромагнитные поля: Влияние на качество капусты при хранение. Хранение и переработка сельхозсырья, (3), 69-80. https://doi.org/10.36107/spfp.2021.229

3. Бурак, Л. Ч., & Сапач, А. Н. (2023). Влияние предварительной обработки импульсным электрическим полем на процесс сушки: обзор предметного поля. Хранение и переработка сельхозсырья, (2), 44-71. https://doi.org/10.36107/spfp.2023.418

4. Виневский, Е. И., & Чернов, А. В. (2021). Обоснование режимов градиентного воздействия постоянного магнитного поля на листья табака в процессе их переработки. Хранение и переработка сельхозсырья, (1), 62-72. https://doi.org/10.36107/spfp.2021.188

5. Гернет, М. В., & Грибкова, И. Н. (2020). Современные способы использования хмелепродуктов в пивоварении. Хранение и переработка сельхозсырья, (4), 34-42. https://doi.org/10.36107/spfp.2020.328

6. Данильчук Т. Н., Рогов И. А., & Демидов А. В. (2014). Повышение антиоксидантной активности проростков злаковых культур под воздействием инфракрасного излучения. Хранение и переработка сельхозсырья, (9), 16-21.

7. Данильчук, Т. Н., Юрьев, Д. Н., & Ратников, А. Ю. (2008). Стимуляция биохимических процессов в прорастающем зерне акустическими и электрофизическими методами воздействия. Пиво и напитки, 6, 11-14.

8. Егорова, О. С., Акбулатова Д. Р., & Шилкин А. А. (2023). Факторы, влияющие на качество и сроки годности напитков брожения из плодового сырья: Обзор предметного поля. Хранение и переработка сельхозсырья, (2), 15-32. https://doi.org/10.36107/spfp.2023.447

9. Зайцева, Л. В., Пестерев, М. А., Малахова, А. С., Лаврухин, М. А., & Баженова, А. Е. (2023). Оценка целесообразности применения кавитационных воздействий в производстве помадных конфет с тыквенной подваркой. Хранение и переработка сельхозсырья, (2), 187-200. https://doi.org/10.36107/spfp.2023.355

10. Илюхина, Н. В., Колоколова, А. Ю., Тришканева, М. В., Крюкова, Е. В., Горячева, Е. Д., & Беркетова, Л. В. (2021). Исследование динамики ингибирования микрофлоры растительного сырья в результате обработки ультрафиолетовым излучением. Хранение и переработка сельхозсырья, (1), 117-126. https://doi.org/10.36107/spfp.2021.194

11. Карпенко Д.В., & Беркетова М.А. (2012). Изучение влияния акустических колебаний на качество пивоваренного ячменного солода. Пиво и напитки, (5), 14 – 16.

12. Карпенко, Д. В., & Беркетова, М. А. (2012). Оптимизация параметров акустической обработки пивоваренного ячменного солода. Пиво и напитки, (4), 8 – 10.

13. Карпенко, Д. В., Гернет, M. В., Крюкова, E. В., Грибкова, И. Н., Нурмуханбетова, Д. Е., & Асембаева, Э. К. (2019). Влияние акустических колебаний на развитие популяций дрожжей рода Saccharomyces. Известия Национальной Академии наук Республики Казахстан. Серия геология и технические науки, 4(436), 103-112. https://doi.org/10.32014/2019.2518-170X.103

14. Карпенко, Д. В., Кравченко, В. С., & Шалагинов, К. В. (2017). Активация амилолитического ферментного препарата волновыми воздействиями. Пиво и напитки, (5), 16-19.

15. Карпенко, Д. В., & Позднякова, И.Э. (2016). Повышение экстрактивности хмеля с помощью акустической обработки. Пиво и напитки, (6), 46 – 49.

16. Кондратенко, Т. Ю., Кондратенко, В. В., Курбанова, М. Н., & Пацюк, Л. К. (2023). Ультразвуковая кавитация и её потенциальное влияние на микрофлору. Хранение и переработка сельхозсырья, (4), 75-97. https://doi.org/10.36107/spfp.2023.4.463

17. Крылов, О. Н., Киселев, М. М., Решетников, А. Е., & Абашева, О. Ю. (2023). Предпосевная оптическая обработка семян зерновых культур на примере озимой ржи «Фаленская 4». Хранение и переработка сельхозсырья, (2), 214-230. https://doi.org/10.36107/spfp.2023.439

18. Максименко, В. А. (2021). Конические решетки в устройствах для обеззараживающей обработки зерна. Хранение и переработка сельхозсырья, (2), 139-149. https://doi.org/10.36107/spfp.2021.179

19. Подвигина, О. А., Путилина, Л. Н., & Лазутина, Н. А. (2022). Влияние лазерного облучения семян сахарной свёклы на продуктивность, технологическое качество и сохранность корнеплодов. Хранение и переработка сельхозсырья, (3), 26-39. https://doi.org/10.36107/spfp.2022.335

20. Посокина, Н. Е., & Захарова, А. И. (2023). Современные нетермические способы обработки растительного сырья, применяемые для увеличения его хранимоспособности. Пищевые системы, 6(1), 4-10. https://doi.org/10.21323/2618-9771-2023-6-1-4-10

21. Супрунюк, А. Ю., & Карпенко, Д. В. (2016). Влияние обработки монохроматическим светом на характеристики пивных дрожжей. В сборнике: День Науки. Общеуниверситетская научная конференция молодых учёных и специалистов (с. 134-138). М.: МГУПП.

22. Abesinghe, A. M. N. L., Vidanarachchi, J. K., Islam, N., & Karim, M.A. (2022). Effects of ultrasound on the fermentation profile and metabolic activity of lactic acid bacteria in buffalo's (Bubalus bubalis) milk. Innovative Food Science & Emerging Technologies, 79, 103048. https://doi.org/10.1016/j.ifset.2022.103048

23. Afkhami, R., Varidi, M. J., Varidi, M., & Hadizadeh, F. (2023). Improvement of heat-induced nanofibrils formation of soy protein isolate through NaCl and microwave. Food Hydrocolloids, 139, 108443. https://doi.org/10.1016/j.foodhyd.2022.108443

24. Agcam, E. (2022). Degradation kinetics of pomegranate juice phenolics under cold and warm sonication process. Innovative Food Science & Emerging Technologies, 80, 103080. https://doi.org/10.1016/j.ifset.2022.103080

25. Ai, Z., Ren, H., Lin, Y., Sun, W., Yang, Z., Zhang, Y., Zhang, H., Yang, Z., Pandiselvam, R., & Liu, Y. (2022). Improving drying efficiency and product quality of Stevia rebaudiana leaves using innovative medium-and short-wave infrared drying (MSWID). Innovative Food Science & Emerging Technologies, 81, 103154. https://doi.org/10.1016/j.ifset.2022.103154

26. Aladjadjiyan, A. (2002). Increasing carrot seeds (Daucus carota L.), cv. Nantes, viability through ultrasound treatment. Bulgarian Journal of Agricultural Science, 8, 469–472.

27. Alaei, B., Chayjan, R. A., & Zolfigol, M. A. (2022). Improving tomato juice concentration process through a novel ultrasound-thermal concentrator under vacuum condition: A bioactive compound investigation and optimization. Innovative Food Science & Emerging Technologies, 77, 102983. https://doi.org/10.1016/j.ifset.2022.102983

28. Alsaedi, A. W. M., Al-Mousawi, A. J., Al-Hilphy, A. R., & Gavahian, M. (2023). Non-thermal pasteurization of milk by an innovative energy-saving moderate electrical field equipped with elongated electrodes and process optimization. Innovative Food Science & Emerging Technologies, 88, 103445. https://doi.org/10.1016/j.ifset.2023.103445

29. Altin, O., Skipnes, D., Skåra, T., & Erdogdu, F. (2022). A computational study for the effects of sample movement and cavity geometry in industrial scale continuous microwave systems during heating and thawing processes. Innovative Food Science & Emerging Technologies, 77, 102953. https://doi.org/10.1016/j.ifset.2022.102953

30. Arshad, R. N., Abdul-Malek, Z., Roobab, U., Munir, M. A., Naderipour, A., Qureshi, M. I., El-Din Bekhit, A., Liu, Z. W., & Aadil, R. M. (2021). Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science and Technology, 111, 43-54. https://doi.org/10.1016/j.tifs.2021.02.041

31. Avtar, S., Tejinder, S., & Bains, G. S. (1985). Effect of irradiation on the malting quality of barley. Journal of The Institute of Brewing, 91(4), 253–256. https://doi.org/10.1002/j.2050-0416.1985.tb04335.x

32. Axelrod, R., Beyrer, M., & Mathys, A. (2022). Impact of the electric field intensity and treatment time on whey protein aggregate formation. Journal of Dairy Science, 105(8), 6589 - 6600. https://doi.org/10.3168/jds.2021-21395

33. Baier, M., Foerster, J., Schnabel, U., Knorr, D., Ehlbeck, J., Herppich, W. B., & Schlüter, O. (2013). Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: Evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biology and Technology, 84, 81–87. https://doi.org/10.1016/j.postharvbio.2013.03.022

34. Balthazar, C. F., Cabral, L., Guimarães, J. T., Noronha, M. F., Cappato, L. P., Cruz, A. G., & Sant'Ana, A. S. (2022). Conventional and ohmic heating pasteurization of fresh and thawed sheep milk: Energy consumption and assessment of bacterial microbiota during refrigerated storage. Innovative Food Science & Emerging Technologies, 76, 102947. https://doi.org/10.1016/j.ifset.2022.102947

35. Barba, F. J., Koubaa, M., do Prado-Silva, L., Orlien, V., de Souza Sant’Ana, A. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends in Food Science & Technology, 66, 20-35. https://doi.org/10.1016/j.tifs.2017.05.011

36. Barrón-García, O. E., Nava-Álvarez, B., Gaytán-Martínez, M., Gonzalez-Jasso, E., & Morales-Sánchez, E. (2022). Ohmic heating blanching of Agaricus bisporus mushroom: Effects on polyphenoloxidase inactivation kinetics, color, and texture. Innovative Food Science & Emerging Technologies, 80, 103105. https://doi.org/10.1016/j.ifset.2022.103105

37. Basak, S., Jha, T., & Chakraborty, S. (2023). Pasteurization of tender coconut water by pulsed light treatment: Microbial safety, enzymatic inactivation, and impact on physicochemical properties. Innovative Food Science & Emerging Technologies, 84, 103302. https://doi.org/10.1016/j.ifset.2023.103302

38. Basak, S., Mahale, S., & Chakraborty, S. (2022). Changes in quality attributes of pulsed light and thermally treated mixed fruit beverages during refrigerated storage (4° C) condition. Innovative Food Science & Emerging Technologies, 78, 103025. https://doi.org/10.1016/j.ifset.2022.103025

39. Belloli, M., Cigarini, M., Milesi, G., Mutti, P., & Berni, E. (2022). Effectiveness of two UV-C light-emitting diodes (LED) systems in inactivating fungal conidia on polyethylene terephthalate. Innovative Food Science & Emerging Technologies, 79, 103050. https://doi.org/10.1016/j.ifset.2022.103050

40. Boda, S. K., Ravikumar, K., Saini, D. K., Basu, B. (2015). Differential viability response of prokaryotes and eukaryotes to high strength pulsed magnetic stimuli. Bioelectrochemistry, 106, 276–289. https://doi.org/10.1016/j.bioelechem.2015.07.009

41. Bonifácio-Lopes, T., Vilas-Boas, A., Machado, M., Costa, E. M., Silva, S., Pereira, R. N., Campos, D., Teixeira, J. A., & Pintado, M. (2022). Exploring the bioactive potential of brewers spent grain ohmic extracts. Innovative Food Science & Emerging Technologies, 76, 102943. https://doi.org/10.1016/j.ifset.2022.102943

42. Canelli, G., Kuster, I., Jaquenod, L., Buchmann, L., Martínez, P. M., Rohfritsch, Z., Dionisi, F., Bolten, C. J., Nanni, P., & Mathys, A. (2022). Pulsed electric field treatment enhances lipid bioaccessibility while preserving oxidative stability in Chlorella vulgaris. Innovative Food Science & Emerging Technologies, 75, 102897. https://doi.org/10.1016/j.ifset.2021.102897

43. Castro-Campos, F. G., Morales-Sánchez, E., Cabrera-Ramírez, Á. H., Martinez, M. M., Rodríguez-García, M. E., & Gaytán-Martínez, M. (2023). High amylose starch thermally processed by ohmic heating: Electrical, thermal, and microstructural characterization. Innovative Food Science & Emerging Technologies, 87, 103417. https://doi.org/10.1016/j.ifset.2023.103417

44. Ceribeli, C., Otte, J., Walkling-Ribeiro, M., Cardoso, D. R., &. Ahrné, L. M. (2023). Impact of non-thermal pasteurization technologies on vitamin B12 content in milk. Innovative Food Science & Emerging Technologies, 84, 103303. https://doi.org/10.1016/j.ifset.2023.103303

45. Chang, C.-K., Tsai, S.-Y., Gavahian, M., Cheng, K.-C., Hou, C.-Y., Yudhistira, B., Lin, S.-H., Santoso, S. P., & Hsieh, C.-W. (2023). Direct and alternating current electric fields affect pectin esterase and cellulase in tomato (Solanum lycopersicum L.) fruit during storage. Postharvest Biology and Technology, 205, 112495. https://doi.org/10.1016/j.postharvbio.2023.112495

46. Chang, C.-K., Yang, Y.-T., Gavahian, M., Cheng, K.-C., Hou, C.-Y., Chen, M.-H., Santoso, S. P., & Hsieh, C.-W. (2023). Prolonging the shelf-life of atemoya (Annona cherimola × Annona squamosa) using pulsed electric field treatments. Innovative Food Science & Emerging Technologies, 88, 103458. https://doi.org/10.1016/j.ifset.2023.103458

47. Charles-Rodríguez, A. V., Nevárez-Moorillón, G. V., Zhang, Q. H., & Ortega-Rivas, E. (2007). Comparison of Thermal Processing and Pulsed Electric Fields Treatment in Pasteurization of Apple Juice. Food and Bioproducts Processing, 85(2), 93-97. https://doi.org/10.1205/fbp06045

48. Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813-835. https://doi.org/10.1016/j.ultsonch.2010.11.023

49. Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Review of green food processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies, 41, 357-377. https://doi.org/10.1016/j.ifset.2017.04.016

50. Chen, B., Chang, C., Cheng, K., Hou, C., Lin, J., Chen, M., Permatasari, S., Chen, C., & Hsieh, C. (2022). Using the response surface methodology to establish the optimal conditions for preserving bananas (Musa acuminata) in a pulsed electric field and to decrease browning induced by storage at a low temperature. Food Packaging and Shelf Life, 31, 100804. https://doi.org/10.1016/j.fpsl.2021.100804

51. Chen, B. R., Wang, Z. M., Lin, J. W., Wen, Q. H., Xu, F. Y., Li, J., Wang, R., & Zeng, X. A. (2022). Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field. Food Hydrocolloids, 129, 107655. https://doi.org/10.1016/j.foodhyd.2022.107655

52. Chen, H., & Moraru, C. I. (2023). Exposure to 222 nm far UV-C effectively inactivates planktonic foodborne pathogens and inhibits biofilm formation. Innovative Food Science & Emerging Technologies, 87, 103411. https://doi.org/10.1016/j.ifset.2023.103411

53. Cho, E.-R., & Kang, D.-H. (2023). Combination system of pulsed ohmic heating and 365-nm UVA light-emitting diodes to enhance inactivation of foodborne pathogens in phosphate-buffered saline, milk, and orange juice. Innovative Food Science & Emerging Technologies, 83, 103250. https://doi.org/10.1016/j.ifset.2022.103250

54. Cokgezme, O. F., & Icier, F. (2022). Frequency and wave type effects on extractability of oleuropein from olive leaves by moderate electric field assisted extraction. Innovative Food Science & Emerging Technologies, 77, 102985. https://doi.org/10.1016/j.ifset.2022.102985

55. Cui, B., Sun, Y., Wang, K., Liu, Y., Fu, H., Wang, Y., & Wang, Y. (2022). Pasteurization mechanism on the cellular level of radio frequency heating and its possible non-thermal effect. Innovative Food Science & Emerging Technologies, 78, 103026. https://doi.org/10.1016/j.ifset.2022.103026

56. Cui, H., Ma, C., Li, C., & Lin, L. (2016). Enhancing the antibacterial activity of thyme oil against Salmonella on eggshell by plasma-assisted process. Food Control, 70, 183–190. https://doi.org/10.1016/j.foodcont.2016.05.056

57. Delcour, J. A., Van Roey, G., & Delvaux, F. (1986). The effects of gamma-iradiation of Pilsner beer. Journal of The Institute of Brewing, 92(6), 591–593. https://doi.org/10.1002/j.2050-0416.1986.tb04458.x

58. Delso, C., Ospina, S., Berzosa, A., Raso, J., & Álvarez-Lanzarote, I. (2023). Defining winery processing conditions for the decontamination of must and wine spoilage microbiota by Pulsed Electric Fields (PEF). Innovative Food Science & Emerging Technologies, 89, 03478. https://doi.org/10.1016/j.ifset.2023.103478

59. Devkota, L., He, L., Bittencourt, C., Midgley, J., & Haritos, V. S. (2022). Thermal and pulsed electric field (PEF) assisted hydration of common beans. LWT - Food Science and Technology, 158, 113163. https://doi.org/10.1016/j.lwt.2022.113163

60. Dhua, S., Kumar, K., Sharanagat, V. S., & Nema, P. K. (2022). Bioactive compounds and its optimization from food waste: Review on novel extraction techniques. Nutrition and Food Science, 53(8), 1270-1288. https://doi.org/10.1108/NFS-12-2021-0373

61. Dima, P., Stubbe, P. R., Mendes, A. C., & Chronakis, I. S. (2023). Control and promotion of probiotic cells' aggregation and viability using DC electric field and standing acoustic waves. Innovative Food Science & Emerging Technologies, 87, 103423. https://doi.org/10.1016/j.ifset.2023.103423

62. Dong, S., Guo, J., Yu, J., Bai, J., Xu, H., Li, M. (2022). Effects of electron-beam generated X-ray irradiation on the postharvest storage quality of Agaricus bisporus. Innovative Food Science & Emerging Technologies, 80, 103079. https://doi.org/10.1016/j.ifset.2022.103079

63. El Hajj, R., Mhemdi, H., Karamoko, G., Karoui, R., Allaf, K., Lebovka, N., & Vorobiev, E. (2023). Impact of pulsed electric field treatment on the viability of Tenebrio molitor insect biomass, and on the following pressing and drying processes. Innovative Food Science & Emerging Technologies, 89, 103462. https://doi.org/10.1016/j.ifset.2023.103462

64. El-Khatib, A. M., Khalil, A. M., El-Kaliuoby, M. I., & Elkhatib, M. (2019). The combined effects of multisized silver nanoparticles and pulsed magnetic field on K. pneumonia. Bioinspired, Biomimetic and Nanobiomaterials, 8(2), 154-160. https://doi.org/10.1680/jbibn.18.00042

65. Fan, L., Xu, J., Guan, X., Li, R., & Wang, S. (2023). Developing radio frequency pretreatment technology for improving yield and quality of flaxseed oil extractions. Innovative Food Science & Emerging Technologies, 86, 103363. https://doi.org/10.1016/j.ifset.2023.103363

66. Ferreira, I. J. B., Alexandre, E. M. C., Saraiva, J. A., & Pintado, M. (2022). Green emerging extraction technologies to obtain high-quality vegetable oils from nuts: A review. Innovative Food Science & Emerging Technologies, 76, 102931. https://doi.org/10.1016/j.ifset.2022.102931

67. Gagneten, M., González Cáceres, S., Rodríguez Osuna, I. A., Olaiz, N. M., Schebor, C., & Leiva, G. E. (2023). Modification of cassava starch by acetylation and pulsed electric field technology: Analysis of physical and functional properties. Innovative Food Science & Emerging Technologies, 85:103344. https://doi.org/10.1016/j.ifset.2023.103344

68. Gasparini, A., Ferrentino, G., Angeli, L., Morozova, K., Zatelli, D., & Scampicchio, M. (2023). Ultrasound assisted extraction of oils from apple seeds: A comparative study with supercritical fluid and conventional solvent extraction. Innovative Food Science & Emerging Technologies, 86, 103370. https://doi.org/10.1016/j.ifset.2023.103370

69. Gavahian, M., Yang, Y.-H., & Tsai, P.-J. (2022).Power ultrasound for valorization of Citrus limon (cv. Eureka) waste: Effects of maturity stage and drying method on bioactive compounds, antioxidant, and anti-diabetic activity. Innovative Food Science & Emerging Technologies, 79, 103052. https://doi.org/10.1016/j.ifset.2022.103052

70. Goldschmidt Lins, P., Aparecida Silva, A., Piccoli Pugine, S. M., Cespedes Arce, A. I., Xavier Costa, E. J., Pires De Melo, M. (2017). Effect of exposure to pulsed magnetic field on microbiological quality, color and oxidative stability of fresh ground beef. Journal of Food Process Engineering, 40(2), e12405. https://doi.org/10.1111/jfpe.12405

71. Gordon, A. G. (1963). The use of ultrasound in agriculture. Ultrasonics, 1963, 1(2), 70-77. https://doi.org/10.1016/0041-624X(63)90057-X

72. Guionet, A., Fujiwara, T., Sato, H., Takahashi, K., Takaki, K., Matsui, M., Tanino, T., & Ohshima, T. (2021). Pulsed electric fields act on tryptophan to inactivate α-amylase. Journal of Electrostatics, 112, 103597. https://doi.org/10.1016/j.elstat.2021.103597

73. Guo, F., Qian, K., Li, X., Deng, X. (2022). Simulation study of cell transmembrane potential and electroporation induced by time-varying magnetic fields. Innovative Food Science & Emerging Technologies, 81, 103117. https://doi.org/10.1016/j.ifset.2022.103117

74. Guo, L., Nie, X.-M., Yang, Y.-H., Ren, Y., Ding, X., & Qian, J.-Y. (2023). Using electric field to modify wet gluten as meat analogue material: A comparative study between pulsed and direct current electric fields. Innovative Food Science & Emerging Technologies, 84, 103300. https://doi.org/10.1016/j.ifset.2023.103300

75. Guo, X., Guo, Y., Yu, J., Gu, T., Russo, H. B., Liu, Q., Du, J., Bai, J., Zhang, B., & Kou, L. (2022). X-ray irradiation - nonthermal processing and preservation of fresh winter jujube (Zizyphus jujuba mill. cv. Dalidongzao). Innovative Food Science & Emerging Technologies, 81, 103151. https://doi.org/10.1016/j.ifset.2022.103151

76. Harizi, N., Madureira, J., Haffani, Y. Z., Zouari, A., Ayadi, M. A., Cabo Verde, S., & Boudhrioua, N. (2023). E-beam irradiation of defatted liquid camel and cow milk fractions: Antiproliferative, antidiabetic and antioxidant activities. Innovative Food Science & Emerging Technologies, 89, 103457. https://doi.org/10.1016/j.ifset.2023.103457

77. He, R., Ma, H., & Wang, H. (2014). Inactivation of E. coli by high-intensity pulsed electromagnetic field with a change in the intracellular Ca2+ concentration. Journal of Electromagnetic Waves and Applications, 28(4), 459–469. https://doi.org/10.1080/09205071.2013.874539

78. Hejazi, S., Siahpoush, V., Ostadrahimi, A., Jahani, B. K. G., Ghasempour, Z. (2022). High-voltage electric discharge as pretreatment for efficient extraction of bioactive compounds from red onion peel. Innovative Food Science & Emerging Technologies, 81, 103153. https://doi.org/10.1016/j.ifset.2022.103153

79. Hernández-Corroto, E., Boussetta, N., Marina, M. L., García, M. C., & Vorobiev, E. (2022). High voltage electrical discharges followed by deep eutectic solvents extraction for the valorization of pomegranate seeds (Punica granatum L.). Innovative Food Science & Emerging Technologies, 79, 103055. https://doi.org/10.1016/j.ifset.2022.103055

80. Hierro, E., Hospital, X. F., Fernández-León, M. F., Caballero, N., Cerdán, B., Fernández, M. (2022). Impact of voltage and pulse delivery mode on the efficacy of pulsed light for the inactivation of Listeria. Innovative Food Science & Emerging Technologies, 77, 102973. https://doi.org/10.1016/j.ifset.2022.102973

81. Hirt, B., Hansjosten, E., Hensel, A., Gräf, V., & Stahl, M. (2022). Improvement of an annular thin film UV-C reactor by fluid guiding elements. Innovative Food Science & Emerging Technologies, 77, 102988. https://doi.org/10.1016/j.ifset.2022.102988

82. Hu, R., Zhang, M., & Mujumdar, A. S. (2022). Novel assistive technologies for efficient freezing of pork based on high voltage electric field and static magnetic field: A comparative study. Innovative Food Science & Emerging Technologies, 80, 103087. https://doi.org/10.1016/j.ifset.2022.103087

83. Iaccheri, E., Castagnini, J. M., Rosa, D. M., & Rocculi, P. (2021). New insights into the glass transition of dried fruits and vegetables and the effect of pulsed electric field treatment. Innovative Food Science and Emerging Technologies, 67, 102566. https://doi.org/10.1016/j.ifset.2020.102566

84. Iaccheri, E., Castagnini, J. M., Tylewicz, U., & Rocculi, P. (2021). Modelling the mechanical properties and sorption behaviour of pulsed electric fields (ИЭП) treated carrots and potatoes after air drying for food chain management. Biosystems Engineering, 223(Part B), 53-60. https://doi.org/10.1016/j.biosystemseng.2021.09.011

85. Iranshahi, K., Psarianos, M., Rubinetti, D., Onwude, D. I., Schlüter, O. K., & Defraeye, T. (2023). Impact of pre-treatment methods on the drying kinetics, product quality, and energy consumption of electrohydrodynamic drying of biological materials. Innovative Food Science & Emerging Technologies, 85, 103338. https://doi.org/10.1016/j.ifset.2023.103338

86. Jamil, Y. Perveen, R., Ashraf, M., Ali, Q., Iqba, M., & Ahmad, M. R. (2013). He-Ne laser induced changes in germination, thermodynamic parameters, internal energy and enzyme activities of wheat during germination and early growth physiological attributes. Laser Physics Letters, 10(4), 045606. http://doi.org/10.1088/1612-2011/10/4/045606

87. Kalugina, O., Nafikova, A., Chernenkov, E., Leonova, S., Chernenkova A., Bodrov, A., & Badamshina, E. (2021). Application of ultrasound for enhancing fermentation rates in brewing technology. Acta Scientiarum Polonorum, Technologia Alimentaria, 20(3), 301-312.

88. Kanafusa, S., Maspero, U., Petersen, M. A., & Galindo, F. G. (2022). Influence of pulsed electric field-assisted dehydration on the volatile compounds of basil leaves. Innovative Food Science & Emerging Technologies, 77, 102979. https://doi.org/10.1016/j.ifset.2022.102979

89. Karatas, O., Topcam, H., Altin, O., & Erdogdu, F. (2022). Computational study for microwave pasteurization of beer and hypothetical continuous flow system design. Innovative Food Science & Emerging Technologies, 75, 102878. https://doi.org/10.1016/j.ifset.2021.102878

90. Karatas, O., Uyar, R., Berk, B., Mecit Oztop, H., Marra, F., & Erdogdu, F. (2023). Honey De-crystallization by radio frequency heating for process efficiency: Computational monitoring combined with time domain nuclear magnetic resonance. Innovative Food Science & Emerging Technologies, 85, 103345. https://doi.org/10.1016/j.ifset.2023.103345

91. Kardos, T. J., & Rabussay, D. P. (2012). Contactless magneto-permeabilization for intracellular plasmid dna delivery in-vivo. Human Vaccines & Immunotherapeutics, 8(11), 1707–1713. https://doi.org/10.4161/hv.21576

92. Karpenko, D., & Grishin A. (2024). Yeast activation methods used in fermentation industries. In A. Morata, I. Loira, C. González, & C. Escott (Eds.), New Advances in Saccharomyces. IntechOpen. - 274 p. https://doi.org/10.5772/intechopen.1003283

93. Katsimichas, A., Stathi, A., Dimopoulos, G., Giannakourou, M., & Taoukis, P. (2024). Kinetics of pulsed electric fields assisted pigment extraction from Chlorella pyrenoidosa. Innovative Food Science & Emerging Technologies, 91, 103547. https://doi.org/10.1016/j.ifset.2023.103547

94. Keyser, M., Muller, I. A., Cilliers, F., Nel, W., & Gouws, P. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science & Emerging Technologies, 9(3), 348-354. https://doi.org/10.1016/j.ifset.2007.09.002

95. Kim, D. K., Shin, M., Kim, H. S., & Kang, D.-H. (2022). Inactivation efficacy of combination treatment of blue light-emitting diodes (LEDs) and riboflavin to control E. coli O157:H7 and S. typhimurium in apple juice. Innovative Food Science & Emerging Technologies, 78, 103014. https://doi.org/10.1016/j.ifset.2022.103014

96. Kim, S.-Y., Jeong, U.-C., Ju, H.-I., Jeong, S., & Lee, D.-U. (2023). Effect of pulsed electric field pretreatment on mass transfer during hot air drying: Drying and rehydration properties of sweet potato. Innovative Food Science & Emerging Technologies, 89, 103449. https://doi.org/10.1016/j.ifset.2023.103449

97. Kim, Y.-J., Lee, J.-I., & Kang, D.-H. (2023). Inactivation of foodborne pathogenic bacteria in water and stainless steel surfaces by vacuum-UV amalgam lamp and low-pressure mercury UV lamp irradiation. Innovative Food Science & Emerging Technologies, 84, 103297. https://doi.org/10.1016/j.ifset.2023.103297

98. Knorr, D., Zenker, M., Heinz, V., & Lee, D.-U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15(5), 261-266. https://doi.org/10.1016/j.tifs.2003.12.001

99. Köksel, H., Çelik, S., & Özkara, R. (1998). Effects of gamma irradiation on barley and malt on malting quality. Journal of The Institute of Brewing, 104(2), 89–92. https://doi.org/10.1002/j.2050-0416.1998.tb00980.x

100. Kottapalli, B., Wolf-Hall, C. E., & Schwarz, P. (2006). Effect of electron-beam irradiation on the safety and quality of Fusarium-infected malting barley. International journal of food microbiology, 110(3). 224-231. https://doi.org/10.1016/j.ijfoodmicro.2006.04.007

101. Lakshmanan, S., Gupta, G. K., Avci, P., Chandran, R., Sadasivam, M., Jorge, A. E. S. & Hamblin, M. R. (2014). Physical energy for drug delivery; poration, concentration and activation. Advanced Drug Delivery Reviews, 71, 98–114. https://doi.org/10.1016/j.addr.2013.05.010

102. Lan, M., Luo, D., Yue, C., Bai, Z., Li, P., & Wang, L. (2023). Ultrasound-assisted separation of wheat flour: Enhancing the degree of separation and characterization analysis. Innovative Food Science & Emerging Technologies, 90, 103493. https://doi.org/10.1016/j.ifset.2023.103493.

103. Li, H., Wang, J., Wang, S., & Ling B. (2022). Performance evaluation of the double screw conveyor in radio frequency systems: Heating uniformity and quality of granular foods. Innovative Food Science & Emerging Technologies, 77, 102990. https://doi.org/10.1016/j.ifset.2022.102990

104. Li, Q., Wang, Z., Kang, J., Wang, S., & Hou, L. (2023). Thermal behavior of CMC solutions under simulation of radio frequency pasteurization. Innovative Food Science & Emerging Technologies, 87, 103418. https://doi.org/10.1016/j.ifset.2023.103418

105. Li, X., Li, J., Wang, R., Rahaman, A., Zeng, X. A., & Brennan, C. S. (2021). Combined effects of pulsed electric field and ultrasound pretreatments on mass transfer and quality of mushrooms. LWT, 150, 112008. https://doi.org/10.1016/j.lwt.2021.112008

106. Li, Y., Zhang, S., Bao, Z., Sun, N., & Lin, S. (2022). Exploring the activation mechanism of alcalase activity with pulsed electric field treatment: Effects on enzyme activity, spatial conformation, molecular dynamics simulation and molecular docking parameters. Innovative Food Science & Emerging Technologies, 76, 102918. https://doi.org/10.1016/j.ifset.2022.102918

107. Liang, Z., Zhang, P., Ma, W., Zeng, X.-A., & Fang, Z. (2023). Pulsed electric field processing of green tea-infused chardonnay wine: Effects on physicochemical properties, antioxidant activities, phenolic and volatile compounds. Food Bioscience, 54, 102884. https://doi.org/10.1016/j.fbio.2023.102884

108. Lin, H., He, X., Liu, C., Meng, J., Guan, W., Hou, C., Zhang, C., & Wang, W. (2022). Static magnetic field-assisted supercooling preservation enhances water-holding capacity of beef during subzero storage. Innovative Food Science & Emerging Technologies, 80, 103106. https://doi.org/10.1016/j.ifset.2022.103106

109. Lin, L., Wang, X., & Cui, H. (2019). Synergistic efficacy of pulsed magnetic fields and Litseacubeba essential oil treatment against Escherichia coli o157:h7 in vegetable juices. Food Control, 106, 106686. https://doi.org/10.1016/j.foodcont.2019.06.012

110. Lin, L., Wang, X., He, R., & Cui, H. (2019). Action mechanism of pulsed magnetic field against E. coli o157:h7 and its application in vegetable juice. Food Control, 95, 150–156. https://doi.org/10.1016/j.foodcont.2018.08.011

111. Liu, B., Jin, F., Li, Y., Wang, H., Chi, Y., Tian, D., & Feng, Z. (2022). Pasteurization of egg white by integrating ultrasound and microwave: Effect on structure and functional properties. Innovative Food Science & Emerging Technologies, 79, 103063. https://doi.org/10.1016/j.ifset.2022.103063

112. Liu, D., Zhu, L., Guo, Y., Zhao, Y., Betchem, G., Yolandani, Y., & Ma, H. (2023). Enhancing submerged fermentation of Antrodia camphorata by low-frequency alternating magnetic field. Innovative Food Science & Emerging Technologies, 86, 103382. https://doi.org/10.1016/j.ifset.2023.103382

113. Liu, Y., Huang, M., Liu, X., & Hu, M. (2023). Structural characterization and functional properties of egg white protein treated by electron beam irradiation. Innovative Food Science & Emerging Technologies, 84, 103262. https://doi.org/10.1016/j.ifset.2022.103262

114. Liu, Y., Qu, W., Feng, Y., & Ma, H. (2023). Fine physicochemical, structural, rheological and gelling properties of tomato pectin under infrared peeling technique. Innovative Food Science & Emerging Technologies, 85, 103343. https://doi.org/10.1016/j.ifset.2023.103343

115. Llano, K. R. A., Marsellés-Fontanet, A. R., Martín-Belloso, O., & Soliva-Fortuny, R. (2016). Impact of pulsed light treatments on antioxidant characteristics and quality attributes of fresh-cut apples. Innovative Food Science & Emerging Technologies, 33, 206–215. https://doi.org/10.1016/j.ifset.2015.10.021

116. Lotfi, M., Hamdami, N., Dalvi-Isfahan, M., & Fallah-Joshaqani, S. (2022). Effects of high voltage electric field on storage life and antioxidant capacity of whole pomegranate fruit. Innovative Food Science & Emerging Technologies, 75, 102888. https://doi.org/10.1016/j.ifset.2021.102888

117. Lucas, J. R., Cárcel, J. A., Velasco, R., Benedito, J., & Cabeza, M. C. (2023). Modelling of the electron range for use of E-beam treatment for boned dry-cured hams sanitation. Innovative Food Science & Emerging Technologies, 84, 103296. https://doi.org/10.1016/j.ifset.2023.103296

118. Lucinskis, A., Novickij, V., Grainys, A., Novickij, J., & Tolvaisiene, A. (2014). Modelling the cell transmembrane potential dependence on the structure of the pulsed magnetic field coils. Elektronika ir Elektrotechnika, 20(8), 9–12. https://doi.org/10.5755/j01.eee.20.8.8432

119. Luna-Domínguez, R. A., Hernández-Carranza, P., Ávila-Sosa, R., Valadez-Blanco, R., Ruiz-López, I. I., & Ochoa-Velasco, C. E. (2023). Enhancing gallic acid antimicrobial activity against Escherichia coli by ultraviolet-C light irradiation. Innovative Food Science & Emerging Technologies, 86, 103378. https://doi.org/10.1016/j.ifset.2023.103378

120. Lung, C. T., Chang, C. K., Cheng, F. C., Hou, C. Y., Chen, M. H., Santoso, S. P., Yudhistira, B., & Hsieh, C. W. (2022). Effects of pulsed electric field-assisted thawing on the characteristics and quality of Pekin duck meat. Food Chemistry, 390, 133137. https://doi.org/10.1016/j.foodchem.2022.133137

121. Ma, S., Liu, J., Zhang, Q., Lin, Q., Liu, R., Xing, Y., Jiang, H. (2022). 3D printing performance using radio frequency electromagnetic wave modified potato starch. Innovative Food Science & Emerging Technologies, 80, 103064. https://doi.org/10.1016/j.ifset.2022.103064

122. Mahendran, R., Ramanan, K. R., Barba, F. J., Lorenzo, J. M., López-Fernández, O., Munekata, P. E. S., Roohinejad, S., Sant’Ana, A. S., & Tiwari, B. K. (2019). Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends in Food Science & Technology, 88, 67-79. https://doi.org/10.1016/j.tifs.2019.03.010

123. Mannozzi, C., Fauster, T., Haas, K., Tylewicz, U., Romani, S., Rosa, M. D., & Jaeger, H. (2018). Role of thermal and electric field effects during the pre-treatment of fruit and vegetable mash by pulsed electric fields (PEF) and ohmic heating (OH). Innovative Food Science & Emerging Technologies, 48, 131-137. https://doi.org/10.1016/j.ifset.2018.06.004

124. Mannozzi, C., Foligni, R., Mozzon, M., Aquilanti, L., Cesaro, C., Isidoro, N., Osimani, A. (2023). Nonthermal technologies affecting techno-functional properties of edible insect-derived proteins, lipids, and chitin: A literature review. Innovative Food Science & Emerging Technologies, 88, 103453. https://doi.org/10.1016/j.ifset.2023.103453

125. Martínez, J. M., Delso, C., Aguilar, D., Cebrián, G., Álvarez, I., Raso, J. (2018). Factors influencing autolysis of Saccharomyces cerevisiae cells induced by pulsed electric fields. Food Microbiology, 73, 67-72. https://doi.org/10.1016/j.fm.2017.12.008

126. Mekala, S., Silva, E. K., & Saldaña, M. D. A. (2022). Ultrasound-assisted production of emulsion-filled pectin hydrogels to encapsulate vitamin complex: Impact of the addition of xylooligosaccharides, ascorbic acid and supercritical CO2 drying. Innovative Food Science & Emerging Technologies, 76, 102907. https://doi.org/10.1016/j.ifset.2021.102907

127. Mercado-Sáenz, S., López-Díaz, B., Burgos-Molina, A. M., Sendra-Portero, F., González-Vidal, A. & Ruiz-Gómez, M. J. (2022) Exposure of S. cerevisiae to pulsed magnetic field during chronological aging could induce genomic DNA damage. International Journal of Environmental Health Research, 32(8), 1756-1767. https://doi.org/10.1080/09603123.2021.1910212

128. Mfa Mezui, A., & Swart, P. (2010). Effect of UV-C disinfection of beer–sensory analyses and consumer ranking. Journal of The Institute of Brewing, 116(4), 348–353. https://doi.org/10.1002/j.2050-0416.2010.tb00785.x

129. Miklavcic, D., Novickij, V., Kranjc, M., Polajzer, T., Haberl Meglic, S., Batista Napotnik, T., Romih, R., & Lisjak, D. (2020). Contactless electroporation induced by high intensity pulsed electromagnetic fields via distributed nanoelectrodes. Bioelectrochemistry, 132, 107440. https://doi.org/10.1016/j.bioelechem.2019.107440

130. Milani, E. A., Ramsey, J. G., & Silva, F. V. M. (2016). High pressure processing and thermosonication of beer: Comparing the energy requirements and Saccharomyces cerevisiae ascospores inactivation with thermal processing and modeling. Journal of Food Engineering, 181, 35-41. https://doi.org/10.1016/j.jfoodeng.2016.02.023

131. Milani, E. A., & Silva, F. V. M. (2017). Ultrasound assisted thermal pasteurization of beers with different alcohol levels: Inactivation of Saccharomyces cerevisiae ascospores. Journal of Food Engineering, 198, 45-53. https://doi.org/10.1016/j.jfoodeng.2016.11.015

132. Mo, Z., Liu, Q., Xie, W., Ashraf, U., Abrar, M., Pan, S., Duan, M., Tian, H., Wang, S., & Tang, X. (2020). Ultrasonic seed treatment and Cu application modulate photosynthesis, grain quality, and Cu concentrations in aromatic rice. Photosynthetica, 58, 682-691. https://doi.org/10.32615/ps.2020.009

133. Mok, J. H., Her, J.-Y., Kang, T., Hoptowit, R., Jun, S. (2017). Effects of pulsed electric field (PEF) and oscillating magnetic field (OMF) combination technology on the extension of supercooling for chicken breasts. Journal of Food Engineering, 196, 27–35. https://doi.org/10.1016/j.jfoodeng.2016.10.002

134. Morais, A. T. B., Morais, S. T. B., Feitor, J. F., Cavalcante, K. N., Catunda, L. G. S., Walkling-Ribeiro, M., Cardoso, D. R., Ahrné, L. M. (2023). Physico-chemical and structural modifications of caseins in micellar casein isolate induced by pulsed electric field. Innovative Food Science & Emerging Technologies, 89, 103476. https://doi.org/10.1016/j.ifset.2023.103476

135. Morales-de la Peña, M., Arredondo-Ochoa, T., Welti-Chanes, J., Martín-Belloso, O. (2023). Application of moderate intensity pulsed electric fields in red prickly pears and soymilk to develop a plant-based beverage with potential health-related benefits. Innovative Food Science & Emerging Technologies, 88, 103421. https://doi.org/10.1016/j.ifset.2023.103421

136. Mostafa, M. R., Ali, F. M., Balabel, N. M., & Mohamad, E. A. (2021). Electric pulses decrease the growth activity of Erwinia amylovora bacterium. Journal of Biological Sciences, 17(1), 261-270. https://doi.org/10.21608/ajbs.2021.201678

137. Mousakhani-Ganjeh, A., Amiri, A., Nasrollahzadeh, F., Wiktor, A., Nilghaz, A., Pratap-Singh, A., & Mousavi Khaneghah, A. (2021). Electro-based technologies in food drying - A comprehensive review. LWT, 145, 111315. https://doi.org/10.1016/j.lwt.2021.111315

138. Müller, W. A., Sarkis, J. R., Marczak, L. D. F., & Muniz, A. R. (2022). Molecular dynamics study of the effects of static and oscillating electric fields in ovalbumin. Innovative Food Science & Emerging Technologies, 75, 102911. https://doi.org/10.1016/j.ifset.2021.102911

139. Murdoch, M., Waser, A., Morantes, G., Dubovcova, B., Akepsimaidis, G., Currie, A., Pillai, S. D. (2022). A new proposed validation method for low energy electron beam processing of dry spices. Innovative Food Science & Emerging Technologies, 81. 103141. https://doi.org/10.1016/j.ifset.2022.103141

140. Neri, L., Giancaterino, M., Rocchi, R., Tylewicz, U., Valbonetti, L., Faieta, M., & Pittia, P. (2021). Pulsed electric fields (PEF) as hot air drying pre-treatment: Effect on quality and functional properties of saffron (Crocus sativus L.). Innovative Food Science and Emerging Technologies, 67, 102592. https://doi.org/10.1016/j.ifset.2020.102592

141. Nguyen, C. H., Tikekar, R. H., Nitin, N. (2022). Combination of high-frequency ultrasound with propyl gallate for enhancing inactivation of bacteria in water and apple juice. Innovative Food Science & Emerging Technologies, 82, 103149. https://doi.org/10.1016/j.ifset.2022.103149

142. Novickij, V., Dermol, J., Grainys, A., Kranjc, M., Miklavčič, D. (2017). Membrane permeabilization of mammalian cells using bursts of high magnetic field pulses. PeerJ, 5, e3267. https://doi.org/10.7717/peerj.3267

143. Novickij, V., Grainys, A., Kučinskaitė-Kodzė, I., Žvirblienė, A., & Novickij, J. (2015). Magneto-permeabilization of viable cell membrane using high pulsed magnetic field. IEEE Transactions on Magnetics, 51(9), 1–5. https://doi.org/10.1109/TMAG.2015.2439638

144. Novickij, V., Stanevičienė, R., Gruškienė, R., Badokas, K., Lukša, J., Sereikaitė, J., Mažeika, K., Višniakov, N., Novickij, J., Servienė, E. (2021). Inactivation of bacteria using bioactive nanoparticles and alternating magnetic fields. Nanomaterials, 11(2), 342. https://doi.org/10.3390/nano11020342

145. Nowosad, K., Sujka, M., Pankiewicz, U., & Kowalski, R. (2021). The application of PEF technology in food processing and human nutrition. Journal of Food Science and Technology, 58(2), 397- 411. https://doi.org/10.1007/s13197-020-04512-4

146. Okonkwo, C. E., Moses, O. I., Nwonuma, C., Abiola, T., Benjamin, B. O.., Folorunsho, J. O., Olaniran, A. F., & Pan, Z. (2022). Infrared and Microwave as a dry blanching tool for Irish potato: Product quality, cell integrity, and artificial neural networks (ANNs) modeling of enzyme inactivation kinetic. Innovative Food Science & Emerging Technologies, 78, 103010. https://doi.org/10.1016/j.ifset.2022.103010

147. Okonkwo, C. E., Ojediran, J, O., Baribefe, A.V., Ajao, F., Pan, Z., Arotile, A., Emmanuel, C. C., & Ogomegbum, C. A. (2022). Microwave-assisted infrared dry-peeling of beetroot: Peeling performance, product quality, and cell integrity. Innovative Food Science & Emerging Technologies, 77, 102982. https://doi.org/10.1016/j.ifset.2022.102982

148. Oliveira, G. A. R., Guimarães, J. T., Ramos, G. L. P. A., Esmerino, E. A., Pimentel, T. C., Neto, R. P. C., Tavares, M. I. B., Sobral, L. A., Souto, F., Freitas, M. Q., Costa, L. E. O., & Cruz, A. G. (2022). Benefits of thermosonication in orange juice whey drink processing. Innovative Food Science & Emerging Technologies, 75, 102876. https://doi.org/10.1016/j.ifset.2021.102876

149. Pang, J., Zhang, F., Wang, Z., Wu, Q., Liu, B., Meng, X. (2022). Inhibitory effect and mechanism of curcumin-based photodynamic inactivation on patulin secretion by Penicillium expansum. Innovative Food Science & Emerging Technologies, 80, 103078. https://doi.org/10.1016/j.ifset.2022.103078

150. Park, J.-S., Ha, J.-W. (2019). Ultrasound treatment combined with fumaric acid for inactivating food-borne pathogens in apple juice and its mechanisms. Food Microbiology, 84, 103277. https://doi.org/10.1016/j.fm.2019.103277

151. Pereira, S. G., Gomes-Dias, J. S., Pereira, R. N., Teixeira, J. A., & Rocha, C. M. R. (2023). Innovative processing technology in agar recovery: Combination of subcritical water extraction and moderate electric fields. Innovative Food Science & Emerging Technologies, 84, 103306. https://doi.org/10.1016/j.ifset.2023.103306

152. Piyadasa, C., Yeager, T. R., Gray, S. R., Stewart, M. B., Ridgway, H. F., Pelekani, C., & Orbell, J. D. (2018). Antimicrobial effects of pulsed electromagnetic fields from commercially available water treatment devices – controlled studies under static and flow conditions. Journal of Chemical Technology & Biotechnology, 93(3), 871–877. https://doi.org/10.1002/jctb.5442

153. Pihen, C., Mani-López, E., Franco-Vega, A., Jiménez-Munguía, M. T., López-Malo, A., & Ramírez-Corona, N. (2023). Performance of UV-LED and UV-C treatments for the inactivation of Escherichia coli ATCC 25922 in food model solutions: Influence of optical and physical sample characteristics. Innovative Food Science & Emerging Technologies, 85, 103314. https://doi.org/10.1016/j.ifset.2023.103314

154. Pintos, F., Rodoni, L., Patrignani, M., Ixtaina, P., Vicente, A., Martínez, G., & Hasperué, J. (2023). Advances in the use of white light on broccoli and kale postharvest shelf life. Innovative Food Science & Emerging Technologies, 86, 103373. https://doi.org/10.1016/j.ifset.2023.103373

155. Pizarro-Oteíza, S. & Salazar, F. (2022). Effect of UV-LED irradiation processing on pectolytic activity and quality in tomato (Solanum lycopersicum) juice. Innovative Food Science & Emerging Technologies, 80, 103097. https://doi.org/10.1016/j.ifset.2022.103097

156. Polachini, T. G., Norwood, E.-A., Le-Bail, P., Le-Bail, A., & Cárcel, J. A. (2023). Pulsed electric field (PEF) application on wheat malting process: Effect on hydration kinetics, germination and amylase expression. Innovative Food Science & Emerging Technologies, 86, 103375. https://doi.org/10.1016/j.ifset.2023.103375

157. Psarianos, M., Dimopoulos, G., Ojha, S., Cavini, A. C. M., Bußler, S., Taoukis, P., & Schlüter, O. K. (2022). Effect of pulsed electric fields on cricket (Acheta domesticus) flour: Extraction yield (protein, fat and chitin) and techno-functional properties. Innovative Food Science & Emerging Technologies, 76, 102908. https://doi.org/10.1016/j.ifset.2021.102908

158. Qian, J., Zhou, C., Ma, H., Li, S., Yagoub, A. E. A., & Abdualrahman, M. A. Y. (2016). Biological effect and inactivation mechanism of Bacillus subtilis exposed to pulsed magnetic field: Morphology, membrane permeability and intracellular contents. Food Biophysics, 11(4), 429–435. https://doi.org/10.1007/s11483-016-9442-7

159. Qin, S., Zhou, M., Wang, Z., Li P., Huang, S., & Meng, J. (2023). Effect of pulsed electric field on spore germination rate and enzyme activity of Aspergillus niger. Innovative Food Science & Emerging Technologies, 89, 103473. https://doi.org/10.1016/j.ifset.2023.103473

160. Quiroz-Reyes, C. N., & Aguilar-Méndez, M. Á. (2022). Continuous ultrasound and pulsed ultrasound: Selective extraction tools to obtain enriched antioxidants extracts from cocoa beans (Theobroma cacao L.). Innovative Food Science & Emerging Technologies, 80, 103095. https://doi.org/10.1016/j.ifset.2022.103095

161. Rahman, M. M., Hojilla-Evangelista, M. P., & Lamsal, B. P. (2022). Impact of high-power sonication on yield, molecular structure, and functional properties of soy protein isolate. Innovative Food Science & Emerging Technologies, 79, 103034. https://doi.org/10.1016/j.ifset.2022.103034

162. Ricós-Muñoz, N., Soler, A. R., Castagnini, J. M., Moral, R., Barba, F. J., & Pina-Pérez, M. C. (2023). Improvement of the probiotic growth-stimulating capacity of microalgae extracts by pulsed electric fields treatment. Innovative Food Science & Emerging Technologies, 83, 103256. https://doi.org/10.1016/j.ifset.2022.103256

163. Rios-Corripio, G., Morales-de la Peña, M., Welti-Chanes, J., & Guerrero-Beltrán, J. A. (2022). Pulsed electric field processing of a pomegranate (Punica granatum L.) fermented beverage. Innovative Food Science & Emerging Technologies, 79, 103045. https://doi.org/10.1016/j.ifset.2022.103045

164. Robin, A., Ghosh, S., Gabay, B., Levkov, K., & Golberg, A. (2022). Identifying critical parameters for extraction of carnosine and anserine from chicken meat with high voltage pulsed electric fields and water. Innovative Food Science & Emerging Technologies, 76, 102937. https://doi.org/10.1016/j.ifset.2022.102937

165. Rodríguez-Bencomo, J. J., Sanchis, V., Viñas, I., Martín-Belloso, O., & Soliva-Fortuny, R. (2020). Formation of patulin-glutathione conjugates induced by pulsed light: A tentative strategy for patulin degradation in apple juices. Food Chemistry, 315, 126283. https://doi.org/10.1016/j.foodchem.2020.126283

166. Rosa, D. A., de Toledo Guimarães, J., Cabral, L. A., Silva, M. C., Raices, R. S. L., Ramos, G. L. P. A., Pimentel, T. C., Esmerino, E. A., da Cruz, A. G., & de Freitas, M. Q. (2023). Effect of ohmic heating temperature and voltage on liquid whole egg processing. Innovative Food Science & Emerging Technologies, 89, 103490. https://doi.org/10.1016/j.ifset.2023.103490

167. Sagita, D., Setiaboma, W., Kristanti, D., Kurniawan, Y. R., Hidayat, D. D., Darmajana, D. F., Sudaryanto, A., & Nugroho, P. (2022). Experimental investigation of heating pattern, energy requirement and electrical conductivity in a batch ohmic heating system for coffee fermentation. Innovative Food Science & Emerging Technologies, 76, 102946. https://doi.org/10.1016/j.ifset.2022.102946

168. Samaranayake, C. P., Mok, J. H. Heskitt, B. F., & Sastry, S. K. (2022). Nonthermal inactivation of polyphenol oxidase in apple juice influenced by moderate electric fields: Effects of periodic on-off and constant exposure electrical treatments. Innovative Food Science & Emerging Technologies, 77, 102955. https://doi.org/10.1016/j.ifset.2022.102955

169. Shamsudin, R., Noranizan, M. A., Yap, P. Y., & Mansor, A. (2014). Effect of repetitive ultraviolet irradiation on the physico-chemical properties and microbial stability of pineapple juice. Innovative Food Science and Emerging Technologies, 23, 114-120. https://doi.org/10.1016/j.ifset.2014.02.005

170. Shankayi, Z., Firoozabadi, S. M. P., & Mansurian, M. G. (2013). The effect of pulsed magnetic field on the molecular uptake and medium conductivity of leukemia cell. Cell Biochemistry and Biophysics, 65, 211–216. https://doi.org/10.1007/s12013-012-9422-6

171. Sharma, M., & Dash, K. K. (2022). Microwave and ultrasound assisted extraction of phytocompounds from black jamun pulp: Kinetic and thermodynamics characteristics. Innovative Food Science & Emerging Technologies, 75, 102913. https://doi.org/10.1016/j.ifset.2021.102913

172. Sharma, N., Mitali Madhumita, S., Kumar, Y., &. Prabhakar, P. K. (2023). Ultrasonic modulated rice bran protein concentrate: Induced effects on morphological, functional, rheological, and thermal characteristics. Innovative Food Science & Emerging Technologies, 85, 103332. https://doi.org/10.1016/j.ifset.2023.103332

173. Shorstkii, I., Sosnin, M., Smetana, S., Toepfl, S., Parniakov, O., & Wiktor, A. (2022). Correlation of the cell disintegration index with Luikov's heat and mass transfer parameters for drying of pulsed electric field (PEF) pretreated plant materials. Journal of Food Engineering, 316, 110822. https://doi.org/10.1016/j.jfoodeng.2021.110822

174. Schmidt, F., Graf, B., Hinrichs, J., & Kern, C. (2022). Continuous microwave-assisted extrusion for high moisture texturized foods: A feasibility study. Innovative Food Science & Emerging Technologies, 78, 103020. https://doi.org/10.1016/j.ifset.2022.103020

175. Sneha K., & Kumar, A. (2022). Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. Innovative Food Science & Emerging Technologies, 76, 102914. https://doi.org/10.1016/j.ifset.2021.102914

176. Son, E., Coskun, E., Ozturk, S., Bulduk, K., Akpinar, M., Mert, B., & Erdogdu, F. (2022). Microwave decontamination process for hummus: A computational study with experimental validation. Innovative Food Science & Emerging Technologies, 82, 103162. https://doi.org/10.1016/j.ifset.2022.103162

177. Souza, V. R., Illera, A. E., Keener, K. M. (2022). High voltage atmospheric cold plasma technology as a food safety intervention for decontamination of cutting tools during ready-to-eat poultry meat slicing. Innovative Food Science & Emerging Technologies, 80, 103065. https://doi.org/10.1016/j.ifset.2022.103065

178. Sousa, V., Loureiro, L., Carvalho, G., Pereira, R. N. (2022). Extraction of biomolecules from Coelastrella sp. LRF1 biomass using Ohmic Heating technology. Innovative Food Science & Emerging Technologies, 80, 103059. https://doi.org/10.1016/j.ifset.2022.103059

179. Sulaiman, A., Soo, M. J., Farid, M., & Silva, F. V. M. (2015). Thermosonication for polyphenoloxidase inactivation in fruits: Modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures. Journal of Food Engineering, 165, 133-140. https://doi.org/10.1016/j.jfoodeng.2015.06.020

180. Sulaimana, A. S., Chang, C.-K., Hou, C.-Y., Yudhistira, B., Punthi, F., Lung, C.-T., Cheng, K.-C., Santoso, S. P., & Hsieh, C.-W. (2021). Effect of oxidative stress on physicochemical quality of Taiwanese seagrape (Caulerpa lentillifera) with the application of alternating current electric field (ACEF) during post-harvest storage. Processes, 9(6), 1011. https://doi.org/10.3390/pr9061011

181. Steinbruch, E., Wise, J., Levkov, K., Chemodanov, A., Israel, Á., Livney, Y. D., & Golberg, A. (2023). Enzymatic cell wall degradation combined with pulsed electric fields increases yields of water-soluble-protein extraction from the green marine macroalga Ulva sp. Innovative Food Science & Emerging Technologies, 84, 103231. https://doi.org/10.1016/j.ifset.2022.103231

182. Sun, T., & Ling, F. (2021). Optimization method of microwave drying process parameters for rice. Quality Assurance and Safety of Crops & Foods, 13(3), 10-20. https://doi.org/10.15586/qas.v13i3.917

183. Taha, A., Casanova, F., Šimonis, P., Jonikaitė-Švėgždienė, J., Jurkūnas, M., Gomaa, M. A. E., Stirkė, A. (2022). Pulsed electric field-assisted glycation of bovine serum albumin/starch conjugates improved their emulsifying properties. Innovative Food Science & Emerging Technologies, 82, 103190. https://doi.org/10.1016/j.ifset.2022.103190

184. Tamborrino, A., Mescia, L., Taticchi, A., Berardi, A., Lamacchia, C. M., Leone, A., Maurizio Servili, M. (2022). Continuous pulsed electric field pilot plant for olive oil extraction process. Innovative Food Science & Emerging Technologies, 82, 103192. https://doi.org/10.1016/j.ifset.2022.103192

185. Tang, J., Shao, S., Tian, C. (2020). Effects of the magnetic field on the freezing process of blueberry. International Journal of Refrigeration. 113, 288–295. https://doi.org/10.1016/j.ijrefrig.2019.12.022

186. Thongkong, S., Yawootti, A., Klangpetch, W., Fashakin, O. O., Tangjaidee, P., Rawdkuen, S., & Phongthai, S. (2023). A novel application of pulsed electric field as a key process for quick-cooking rice production. Innovative Food Science & Emerging Technologies, 90, 103494. https://doi.org/10.1016/j.ifset.2023.103494

187. Topcam, H., Coskun, E., Son, E., Kutuk, D., Aykut Aytac, S., Mert, B., Ozturk, S., & Erdogdu, F. (2023). Microwave decontamination processing of tahini and process design considerations using a computational approach. Innovative Food Science & Emerging Technologies, 86, 103377. https://doi.org/10.1016/j.ifset.2023.103377

188. Towhidi, L., Firoozabadi, S., Mozdarani, H., & Miklavcic, D. (2012). Lucifer yellow uptake by cho cells exposed to magnetic and electric pulses. Radiology and Oncology, 46(2), 119–125. https://doi.org/10.2478/v10019-012-0014-2

189. Tylewicz, U., Mannozzi, C., Castagnini, J. M., Genovese, J., Romani, S., Rocculi, P., & Rosa, M. D. (2022). Application of PEF- and OD-assisted drying for kiwifruit waste valorisation. Innovative Food Science & Emerging Technologies, 77, 102952. https://doi.org/10.1016/j.ifset.2022.102952

190. Urugo, M. M., Teka, T. A., Berihune, R. A., Teferi, S. L., Garbaba, C. A., Adebo, J. A., Woldemariam, H. W., Astatkie, T. (2023). Novel non-thermal food processing techniques and their mechanism of action in mycotoxins decontamination of foods. Innovative Food Science & Emerging Technologies, 85, 103312. https://doi.org/10.1016/j.ifset.2023.103312

191. Viriot, M., Jean-Claude, A., Niclause, M., Bazard, D., Flayeux, R. & Moll, M. (1980). Improvement of the bitterness of hops: Photoreactions of alpha acids. Journal of the Institute of Brewing, 86(1), 21-24. https://doi.org/10.1002/j.2050-0416.1980.tb03949.x

192. Wang, L., Liu, X., Cai, R., Ge, Q., Zhao, Z., Yue, T., Yuan, Y., Gao, Z., & Wang, Z. (2022). Detoxification of Ochratoxin A by pulsed light in grape juice and evaluation of its degradation products and safety. Innovative Food Science & Emerging Technologies, 78, 103024. https://doi.org/10.1016/j.ifset.2022.103024

193. Wang, S., Xie, Y., Ding, Y., Huo, Z., Li, J., Song, J., Huo, Y., Zhao, L., Zhang, J., Wang, S., Zhang, J., & Ge, W. (2023). Fibrillation of whey protein isolate by radio frequency heating for process efficiency: Assembly behavior, structural characteristics, and in-vitro digestion. Innovative Food Science & Emerging Technologies, 88, 103436. https://doi.org/10.1016/j.ifset.2023.103436

194. Wen, C., Chen, Y., Madina, Zhang, L., Peng, Y., Rong, B., Xi, L., Jiang, S., Yu, J., Bai, J., Wei, N., Kui, L., & Ding, W. (2023). Identification and characterization of goat milk key flavor compounds and their precursors in electron beam irradiation and pasteurization on raw. Innovative Food Science & Emerging Technologies, 87, 103416. https://doi.org/10.1016/j.ifset.2023.103416

195. Wiktor, A., Mandal, R., Singh, A., & Pratap Singh, A. (2019). Pulsed light treatment below a critical fluence (3.82 J/cm2) minimizes photo-degradation and browning of a model phenolic (gallic acid) solution. Foods, 8(9), 380. https://doi.org/10.3390/foods8090380

196. Włodarczyk, K., Czaplicki, S., Tańska, M., & Szydłowska-Czerniak, A. (2023). Microwave pre-treatment as a promising strategy to develop functional milk alternatives obtained from oil industry by-products. Innovative Food Science & Emerging Technologies, 88, 103443. https://doi.org/10.1016/j.ifset.2023.103443

197. Wu, B., Ma, Y., Guo, X., Guo, E., Qiu, C., Gao, K., Ma, H., & Pan, Z. (2023). Catalytic infrared blanching and drying of carrot slices with different thicknesses: Effects on surface dynamic crusting and quality characterization. Innovative Food Science & Emerging Technologies, 88, 103444. https://doi.org/10.1016/j.ifset.2023.103444

198. Wu, P., Qu, W., Abdualrahman, M. A. Y., Guo, Y., Xu, K., & Ma, H. (2017). Study on inactivation mechanisms of Listeria grayi affected by pulse magnetic field via morphological structure, Ca2+ transmembrane transport and proteomic analysis. International Journal of Food Science & Technology, 52(9), 2049–2057. https://doi.org/10.1111/ijfs.13483

199. Wu, X., Zhao, W., Wang, X., Bai, Z., & Ma, L. (2023). A novel variable power microwave (VPM) drying technology for lowering energy consumption and improving the in vitro protein digestibility of black solider fly larvae. Innovative Food Science & Emerging Technologies, 89, 103470. https://doi.org/10.1016/j.ifset.2023.103470

200. Wu, Y., Qin, S., Zang, Y., Zhou, M., Chen, S., & Huang, S. (2023). Numerical study of the effects of pulsed electric field on β-casein. Innovative Food Science & Emerging Technologies, 89, 103484. https://doi.org/10.1016/j.ifset.2023.103484

201. van Wyk, S., Silva, F. V. M., Farid, M. M. (2019). Pulsed electric field treatment of red wine: Inactivation of Brettanomyces and potential hazard caused by metal ion dissolution. Innovative Food Science & Emerging Technologies, 52, 57-65. https://doi.org/10.1016/j.ifset.2018.11.001

202. Xu, B., Feng, M., Chitrakar, B., Cheng, J., Wei, B., Wang, B., Zhou, C., & Ma, H. (2023). Multi-frequency power thermosonication treatments of clear strawberry juice: Impact on color, bioactive compounds, flavor volatiles, microbial and polyphenol oxidase inactivation. Innovative Food Science & Emerging Technologies, 84, 103295. https://doi.org/10.1016/j.ifset.2023.103295

203. Xue, H., Wang, W., Wu, J., Xie, K., Ge, S., & Tan, J. (2024). Ultrasound assisted aqueous two-phase extraction of polysaccharides from corn stigma: Process optimization, structure characterization, and immunomodulatory activity. Innovative Food Science & Emerging Technologies, 91, 103531. https://doi.org/10.1016/j.ifset.2023.103531

204. Yaldagard, M., Mortazavi, S., & Tabatabaie, F. (2008). Application of ultrasonic waves as a priming technique for accelerating and enhancing the germination of barley seed: optimization of method by the Taguchi approach. Journal of the Institute of Brewing, 114(1), 14-21. https://doi.org/10.1002/j.2050-0416.2008.tb00300.x

205. Yamakage, K., Yamada, T., Takahashi, K., Takaki, K., Komuro, M., Sasaki, K., Aoki, H., Kamagata, J., Koide, S., & Orikasa, T. (2021). Impact of pre-treatment with pulsed electric field on drying rate and changes in spinach quality during hot air drying. Innovative Food Science and Emerging Technologies, 68, 102615. https://doi.org/10.1016/j.ifset.2021.102615

206. Yang, Y., Shen, H., Tian, Y., You, Z., & Guo, Y. (2019). Effect of thermal pasteurization and ultraviolet treatment on the quality parameters of not-from-concentrate apple juice from different varieties. CyTA - Journal of Food, 17(1), 189-198. https://doi.org/10.1080/19476337.2019.1569725

207. Ye, L., Niu, Y., Wang, Y., Shi, Y., Liu, Y., Yu, J., Bai, J. & Luo, A. (2023). Effect of X-ray irradiation on quality, cell ultrastructure and electrical parameters of postharvest kiwifruit. Innovative Food Science & Emerging Technologies, 89, 103483. https://doi.org/10.1016/j.ifset.2023.103483

208. Yin, H., Hao, J., Zhu, Y., Li, Y., Wang, F., & Deng, Y. (2019). Thermosonication and inactivation of viable putative non-culturable Lactobacillus acetotolerans in beer. Journal of The Institute of Brewing, 125(1), 75–82. https://doi.org/10.1002/jib.541

209. Yang, H., Sun,M., Yan, B., Zhang, N., Zhao, J., Zhang, H., Chen, W., & Fan, D. (2023). Continuous flow microwave processing of liquid whole egg: Pasteurization and functional characteristics evaluation. Innovative Food Science & Emerging Technologies, 90, 103495. https://doi.org/10.1016/j.ifset.2023.103495

210. Younis, M., Ahmed, I. A. M., Ahmed, K. A., Yehia, H. M., Abdelkarim, D.O., Fickak, A., El-Abedein, A. I. Z., Alhamdan, A., & Elfeky, A. (2023). Pulsed electric field as a novel technology for fresh Barhi date shelf-life extension: Process optimization using response surface methodology. Horticulturae, 9(2), 155. https://doi.org/10.3390/horticulturae9020155

211. Zhang, L., Yang, Z., Zhao, S., Luo, N., & Deng, Q. (2020). Effect of combined pulsed magnetic field and cold water shock treatment on the preservation of cucumbers during postharvest storage. Food and Bioprocess Technology, 13(4), 732–738. https://doi.org/10.1007/s11947-020-02425-w

212. Zhang, M., Feng, X., Liang, Y., He, M., Geng, M., Huang, Y., Teng, F., & Li, Y. (2022). Effects of electron beam irradiation pretreatment on the structural and functional properties of okara protein. Innovative Food Science & Emerging Technologies, 79, 103049. https://doi.org/10.1016/j.ifset.2022.103049

213. Zhang, S., Sun, L., Ju, H., Bao, Z., Zeng, X., & Lin, S. (2021). Research advances and application of pulsed electric field on proteins and peptides in food. Food Research International, 139(1), 109914. https://doi.org/10.1016/j.foodres.2020.109914

214. Zhang, X., Zhang, M., Law, C. L., Guo, Z. (2022). High-voltage electrostatic field-assisted modified atmosphere packaging for long-term storage of pakchoi and avoidance of off-flavors. Innovative Food Science & Emerging Technologies, 79, 103032. https://doi.org/10.1016/j.ifset.2022.103032

215. Zhang, Y., Wang, R., Wen, Q.-H., Rahaman, A., Zeng, X.-A. (2022). Effects of pulsed electric field pretreatment on mass transfer and quality of beef during marination process. Innovative Food Science & Emerging Technologies, 80, 103061. https://doi.org/10.1016/j.ifset.2022.103061

216. Zhao, L., Poh, C. N., Wu, J., Zhao, X., He, Y., & Yang, H. (2022). Effects of electrolysed water combined with ultrasound on inactivation kinetics and metabolite profiles of Escherichia coli biofilms on food contact surface. Innovative Food Science & Emerging Technologies, 76, 102917. https://doi.org/10.1016/j.ifset.2022.102917

217. Zhou, D., Yang, G., Xu, J., Ling, B., & Wang, S. (2023). Non-thermal effect of radio frequency treatments verified by the multi-scale structure and in-vitro digestibility of sweet potato starch. Innovative Food Science & Emerging Technologies, 87, 103412. https://doi.org/10.1016/j.ifset.2023.103412

218. Zhou, J., Wang, M., Barba, F. J., Zhu, Z., & Grimi, N. (2023). A combined ultrasound + membrane ultrafiltration (USN-UF) process for enhancing saccharides separation from Spirulina (Arthrospira platensis). Innovative Food Science & Emerging Technologies, 85, 103341. https://doi.org/10.1016/j.ifset.2023.103341

219. Zhou, X., Wu, Y., Wang, Y., Zhou, X., Chen, X., Xi, J. (2022). An efficient approach for the extraction of anthocyanins from Lycium ruthenicum using semi-continuous liquid phase pulsed electrical discharge system. Innovative Food Science & Emerging Technologies, 80, 103099. https://doi.org/10.1016/j.ifset.2022.103099

220. Zhu, H., Shu, W., Xu, C., Yang, Y., Huang, K., & Ye, J. (2022). Novel electromagnetic-black-hole-based high-efficiency single-mode microwave liquid-phase food heating system. Innovative Food Science & Emerging Technologies, 78, 103012. https://doi.org/10.1016/j.ifset.2022.103012

221. Zhu, R., Jiang, S., Li, D., Law, C. L., Han, Y., Tao, Y., Kiani, H., & Liu, D. (2022). Dehydration of apple slices by sequential drying pretreatments and airborne ultrasound-assisted air drying: Study on mass transfer, profiles of phenolics and organic acids and PPO activity. Innovative Food Science & Emerging Technologies, 75, 102871. https://doi.org/10.1016/j.ifset.2021.102871

222. Zhu, R., Shen, J., Law, C. L., Ma, X., Li, D., Han, Y., Kiani, H., Manickam, S., & Tao, Y. (2023). Combined calcium pretreatment and ultrasonic/microwave drying to dehydrate black chokeberry: Novel mass transfer modeling and metabolic pathways of polyphenols. Innovative Food Science & Emerging Technologies, 83, 103215. https://doi.org/10.1016/j.ifset.2022.103215

223. Zuo, Y., Zhou, B., Wang, S., & Hou, L. (2022). Heating uniformity in radio frequency treated walnut kernels with different size and density. Innovative Food Science & Emerging Technologies, 75, 102899. https://doi.org/10.1016/j.ifset.2021.102899


Рецензия

Для цитирования:


Карпенко Д.В., Гришин А.Г., Заграничная А.Д., Гордюшин М.Г., Смирнова Е.М. Волновые и полевые воздействия в пищевых технологиях: обзор предметного поля. Хранение и переработка сельхозсырья. 2024;32(3):58-81. https://doi.org/10.36107/spfp.2024.3.566

For citation:


Karpenko D.V., Grishin A.G., Zagranichnaya A.D., Gordjushin M.G., Smirnova E.M. Wave and Field Impacts in Food Technologies: A Scoping Review. Storage and Processing of Farm Products. 2024;32(3):58-81. (In Russ.) https://doi.org/10.36107/spfp.2024.3.566

Просмотров: 200


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)