Research on Technological Methods for Extracting Inulin from Common Chicory Roots (Cichorium Intybus L.)
https://doi.org/10.36107/spfp.2024.4.597
Abstract
Introduction: Chicory roots (Cichorium intybus L.) are a valuable source of bioactive components, such as inulin, which are widely utilized in the production of enriched food products. However, traditional water extraction methods based on infusion are characterized by lengthy processing times and low efficiency. The selection of optimal extraction parameters represents a complex problem that can be effectively addressed using mathematical modeling techniques.
Purpose: To investigate and optimize the technological parameters of component extraction from common chicory roots (Cichorium intybus L.) using microwave-assisted treatment.
Materials and Methods: The research utilized chicory roots of the Yaroslavsky 1 variety (Cichorium intybus L. var. sativum DC.). Standard analytical methods were employed for characterization. The determination of non-stationary concentration fields in plant raw materials was performed by solving the modified Lysanov V.M. equation using numerical approaches.
Results: The findings revealed that during traditional infusion, the concentration of target compounds in the extract reached 5.92 ± 0.01% after 185 minutes. In contrast, the application of microwave irradiation at 180 W enabled the achievement of comparable concentrations within just 7 minutes. Parameter estimation for the mass transfer model indicated that the molecular diffusion coefficient increased to 5.535 × 10⁻¹¹ m²/s, resulting in a 25-fold acceleration of diffusion processes for the target components.
Conclusion: Microwave-assisted extraction significantly enhances the efficiency of bioactive compound recovery from chicory roots, drastically reducing processing time. The adapted mass transfer model and its graphical solutions provide a robust framework for determining the optimal parameters for the extraction process.
About the Authors
Albert Kh.-Kh. NugmanovIgor A. Bakin
Russian Federation
Anna S. Mustafina
Polina N. Shapovalova
References
1. Andreeva, E.V., Evseeva, S.S., Aleksanyan, I.Yu., & Nugmanov, A.H.H. (2020). Characterization of fruit and berry raw materials and intermediate products of pigment extract technology. Bulletin of KrasGAU, 10 (163), 181-189. (In Russ.)
2. Bakin, I.A., Mustafina, A.S., Aleksenko, L.A., & Lunin, P.N. (2014). Research of technological processes for obtaining extracts of black currant berries. Bulletin of KrasGAU, 12 (99), 227-230. (In Russ.)
3. Byzov, V.A., Puchkova, T.S., & Pikhalo, D.M. (2023). Assessment of the quality indicators of jerusalem artichoke tubers for processing into inulin and its derivatives. Food Industry, (4), 58-62. (In Russ.)
4. Gulyuk, N.G., Lukin, N.D., Puchkova, T.S., Pikhalo, D.M., & Gulakova, V.A. (2017). On the purification of extract from inulin-containing raw materials. Food Industry, (2), 24-26. (In Russ.)
5. Gulyuk, N.G., Puchkova, T.S., Pikhalo, D.M., Gulakova, V.A., & Kovalenok, V.A. (2014). Investigation of the inulin diffusion process from Jerusalem artichoke tubers. Achievements of science and technology of the agroindustrial complex, (12), 67-69. (In Russ.)
6. Danilin, S.I., Rodionov, Yu.Yu., Rodionov, Yu.V., Chumikov, Yu.A., & Skomorokhova, A.I. (2020). Improving the technology of obtaining powders from vegetable raw materials. Technologies of the food and processing industry of the agro–industrial complex-healthy food products, (4), 150-159. (In Russ.)
7. Kaishev, V.G., Lukin, N.D., Seregin, S.N., & Kornienko, A.V. (2018). The inulin market in Russia: opportunities for the development of the raw material base and the necessary resources to create modern domestic production. Food Industry, (5), 8-17. (In Russ.)
8. Titova, L.M., & Aleksanyan, I.Yu. (2016). Inulin technology: the main trends in the development of the industry and controversial issues. Food Industry, (1), 46-51. (In Russ.)
9. Shirokov, E.P. (1985). Workshop on technology of storage and processing of fruits and vegetables. Moscow: Agropromizdat, 192. (In Russ.)
10. Ankan, K., Yograj, B., Anchal, A., Samandeep, K., Yogesh, K., & Rachna, S. (2023). Utilization of inulin as a functional ingredient in food: Processing, physicochemical characteristics, food applications, and future research directions. Food Chemistry Advances, 3, 100443. https://doi.org/10.1016/j.focha.2023.100443
11. Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies, 41, 357-377. https://doi.org/10.1016/j.ifset.2017.04.016.
12. Demirci, K., Zungur-Bastıoğlu, A., Görgüç, A., Bayraktar, B., Yılmaz, S., & Yılmaz, F. M. (2023) Microwave irradiation, evolutionary algorithm and ultrafiltration can be exploited in process intensification for high-purity and advanced inulin powder production. Chemical Engineering and Processing-Process Intensification, 194, 109565. https://doi.org/10.1016/j.cep.2023.109565
13. Jiang, X., Sotowa, K.-I., Tonomura, O., & Oh, T.H. (2023). Investigation of mass transfer in valve-controlled gas–liquid segmented flow, Chemical Engineering and Processing. Process Intensification, 194, 109578. https://doi.org/10.1016/j.cep.2023.109578
14. Kanakasabai, P., Sivamani, S., Banerjee, S., Vijay, P., & Thirumavalavan, K. (2023). Identification of optimal conditions for the extraction of inulin from chicory. Materials Today: Proceedings, 92 (2), 737-741. https://doi.org/10.1016/j.matpr.2023.04.246
15. Laurenzo, K. S., Navia, J. L., & Neiditch, D. S. (1999). Preparation of inulin products: U.S. Pat. 5968365.
16. Lingyun, W., Jianhua, Wang., Xiaodong, Z., Da, T., Yalin, Y., Chenggang, C., Tianhua, F., & Fan, Z. (2007). Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers. Journal of Food Engineering, 79 (3), 1087-1093. https://doi.org/10.1016/j.jfoodeng.2006.03.028
17. Mangguali, M., Meta, M. & Syarifuddin, A. (2024). Study of Inulin Content and Extractions Methods in Several Types of Tubers: Review Paper. BIO Web of Conferences, 96, 01031. https://doi.org/10.1051/bioconf/20249601031
18. Milic, A., Daniˇcic, T., Tepic Horecki, A., Šumic, Z., Teslic, N., Bursac Kovaˇcevic, D., Putnik, P., & Pavlic, B. (2022). Sustainable Extractions for Maximizing Content of Antioxidant Phytochemicals from Black and Red Currants. Foods, 11, 325. https://doi.org/10.3390/ foods11030325
19. Ozcan, B.E., Tetik, N., & Aloglu, H.S. (2024). Polysaccharides from fruit and vegetable wastes and their food applications: A review. Int J Biol Macromol. 276(2), 134007. https://doi.org/10.1016/j.ijbiomac.2024.134007
20. Özcan, F.Ş., Dikmen, H., Özcan, N., Çetin, Ö., Çelik, M., & Trendafilova, A. (2024). Microwave-assisted extraction optimization of sesquiterpene lactones from Inula helenium roots: A sustainable approach to reduce energy consumption and carbon footprint. Food Science & Nutrition, 12 (1), 255-267. https://doi.org/10.1002/fsn3.3775
21. Petkova, N. T., Sherova, G., & Denev, P. P. (2018). Characterization of inulin from dahlia tubers isolated by microwave and ultrasound-assisted extractions. International Food Research Journal, 25(5), 1876-1884.
22. Redondo-Cuenca, A., Herrera-Vázquez, S. E., Condezo-Hoyos, L., Gómez-Ordóñez, E., & Rupérez, P. (2021). Inulin extraction from common inulin-containing plant sources. Industrial Crops and Products, 170, 113726. https://doi.org/10.1016/j.indcrop.2021.113726
23. Ruiz-Aceituno L., García-Sarrió, M.J., Alonso-Rodriguez, B., Ramos, L., & Sanz M.L. (2016). Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food Chem, (196), 1156-1162. https://doi.org/10.1016/j.foodchem.2015.10.046
24. Saengthongpinit, W., & Sajjaanantakul, T. (2005). Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest biology and Technology, 37(1), 93-100.
25. Sarkar, R., Bhowmik, A., Kundu, A., Dutta, A., Nain, L., Chawla, G., & Saha, S. (2021). Inulin from Pachyrhizus erosus root and its production intensification using evolutionary algorithm approach and response surface methodology. Carbohydr Polym, 1(251), 117042. https://doi.org/ 10.1016/j.carbpol.2020.117042.
26. ToneliI, J.T. C. L., ParkI, K. J., Ramalho, J. R. P., Murr, F. E. X., & Fabbro, I. M. D. (2008). Rheological characterization of chicory root (Cichorium intybus L.) inulin solution. Brazilian Journal of Chemical Engineering, (25), 461-471. https://doi.org/10.1590/S0104-66322008000300004
27. Tsubaki, S., Onda, A., Hiraoka, M., Fujii, S., Azuma, Ju., & Wada, Yu. (2017). Chapter 7 - Microwave-Assisted Water Extraction of Carbohydrates from Unutilized Biomass. Water Extraction of Bioactive Compounds, Elsevier, 199-219. https://doi.org/10.1016/B978-0-12-809380-1.00007-3.
28. Zhang, X., Zhu, X., Shi, X., Hou, Y., &Yi, Y. (2022). Extraction and Purification of Inulin from Jerusalem Artichoke with Response Surface Method and Ion Exchange Resins. ACS Omega, 7 (14), 12048-12055. https://doi.org/10.1021/acsomega.2c00302
29. Zhenzhou, Z., Jingren, He, Gang, L., Francisco, J., , Mohamed, B., , Luhui, K., Ding, O., Bals, N., & Vorobiev, E. (2016). Recent insights for the green recovery of inulin from plant food materials using non-conventional extraction technologies: A review. Innovative Food Science & Emerging Technologies, 33(47). https://doi.org/10.1016/j.ifset.2015.12.023.
Supplementary files
Review
For citations:
Nugmanov A.Kh., Bakin I.A., Mustafina A.S., Shapovalova P.N. Research on Technological Methods for Extracting Inulin from Common Chicory Roots (Cichorium Intybus L.). Storage and Processing of Farm Products. 2024;32(4). (In Russ.) https://doi.org/10.36107/spfp.2024.4.597