Preview

Storage and Processing of Farm Products

Advanced search

Factors Affecting the Electric Charge of Yeast Cells Saccharomyces Cerevisiae

https://doi.org/10.36107/spfp.2020.246

Abstract

The adsorption capacity of yeast cells can partially solve the problem of colloidal instability of beer. It is believed that an increase in the amount of adsorbed colloidal particles can be achieved by increasing the negative charge of the cells. The electric charge on the cell surface is due to the molecular composition of the cell wall, mainly the functional groups of the outer layer of mannoprotein - phosphate, carboxyl, and amino groups. Based on the data obtained by X-ray photoelectron spectroscopy, it was shown that the charge on the cell surface is determined by the concentrations of surface phosphorus and nitrogen, as well as their ratio. Generally, bottom-fermentation strains are characterized by higher surface phosphorus concentrations and lower N/P ratios; the opposite is exact for top-fermentation strains. On the other hand, physicochemical environmental factors also affect the electric charge of cells. The influence of factors such as pH, the time of the fermentation process, aeration of the wort, and the addition of free phosphorus into the culture medium was revealed. So, with a decrease in pH, the electric charge, or the zeta-potential characterizing, it becomes more positive. Since a decrease in pH is observed during fermentation, the electric charge also becomes more positive with the course of the fermentation process. Aeration, the addition of free phosphorus, and an increase in the initial density of the wort, on the contrary, increase the negative charge of cell. Finally, an increase in the number of fermentation cycles leads to a change in the electric charge in the direction of positive values. According to the data presented, it can be concluded that by varying the mentioned factors, it is possible to achieve an increase in the negative charge on the cell surface of the yeast. However, to confirm the assumption of an increase in colloids extracted by adsorption due to an increase in the negative charge of cells, further experimental studies of this issue are required.

About the Authors

T. V. Meledina
ITMO University
Russian Federation


D. V. Manshin
ITMO University
Russian Federation


O. V. Golovinskaia
ITMO University
Russian Federation


R. Harbah
ITMO University
Russian Federation


V. A. Ivanova
ITMO University
Russian Federation


A. A. Morozov
ITMO University
Russian Federation


References

1. Афонин Д.В., Дедегкаев А.Т., Давыденко С.Г., Меледина Т.В. Влияние процессов, протекающих при сбраживании сусла, на инициальную мутность пива // Пиво и напитки. 2012. № 1. С. 26-29.

2. Дедегкаев A.T. Повышение коллоидной стабильности пива с применением силикагеля и поливинилполипирролидона: автореф. на соиск. ученой степ. канд. техн. наук: 05.18.07 - биотехнология пищевых продуктов и биологически активных веществ. СПб., 2005. 12 с.

3. Евстратова К.И., Купина Н.А., Малахова Е.Е. Физическая и коллоидная химия. М.: Изд-во Высшая школа, 1990. 486 с.

4. Михеева Е.В., Пикула Н.П. Определение электрокинетического потенциала методом электрофореза. Томск: Изд-во Томского политехнического университета, 2009. 16 с.

5. Aguilar-Uscanga B., Francois J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation // Letters in applied microbiology. 2003. Vol. 37. No. 3. P. 268-274. https://doi.org/10.1046/j.1472-765X.2003.01394.x

6. Amory D.E., Rouxhet P.G., Dufour J.P. Flocculence of brewery yeasts and their surface properties: chemical composition, electrostatic charge and hydrophobicity // Journal of the Institute of Brewing. 1988. Vol. 94. No. 2. Р. 79-84. https://doi.org/10.1002/j.2050-0416.1988.tb04561.x

7. Asano K., Shinagawa K., Hashimoto N. Characterization of haze-forming proteins of beer and their roles in chill haze formation // Journal of the American Society of Brewing Chemists. 1982. Vol. 40. No. 4. P. 147-154. https://doi.org/10.1094/ASBCJ-40-0147

8. Bamforth C.W. Beer haze // Journal of the American Society of Brewing Chemists. 1999. Vol. 57. No. 3. P. 81-90. https://doi.org/10.1094/ASBCJ-57-0081

9. Beavan M.J., Belk D.M., Stewart G.G., Rose A.H. Changes in electrophoretic mobility and lytic enzyme activity associated with development of flocculating ability in Saccharomyces cerevisiae // Canadian Journal of Microbiology. 1979. Vol. 25. No. 8. P. 888-895. https://doi.org/10.1139/m79-132

10. Bowen W.R., Cooke R.J. Studies of Saccharomyces cerevisiae during Fermentation - an in vivo electrokinetic investigation // Biotechnology and Bioengineering. 1989. Vol. 33. P. 706-715. https://doi.org/10.1002/bit.260330608

11. Bowen W.R., Sabuni H.A., Ventham T.J. Studies of the Cell-Wall Properties of Saccharomyces cerevisiae during Fermentation // Biotechnology and Bioengineering. 1992. Vol. 40. P. 1309-1318. https://doi.org/10.1002/bit.260401104

12. Bowen W.R., Ventham T.J. Aspects of yeast flocculation. Size distribution and zeta-potential // Journal of the Institute of Brewing. 1994. Vol. 100. No. 3. P. 167-172. https://doi.org/10.1002/j.2050-0416.1994.tb00817.x

13. Caridi A. Enological functions of parietal yeast mannoproteins // Antonie van Leeuwenhoek. 2006. Vol. 89. P. 417-422. https://doi.org/10.1007/s10482-005-9050-x

14. Chapon L. The mechanics of beer stabilization // Brew. Guard. 1994. Vol. 123. No. 12. P. 46-50.

15. Dengis P.B., Nelissen L.R., Rouxhet P.G. Mechanisms of Yeast Flocculation: Comparison of Top and Bottom-Fermenting Strains // Applied and environmental microbiology. 1995. Vol. 61. No. 2. P. 718-728. https://aem.asm.org/content/61/2/718

16. Dengis P.B., Rouxhet P.G. Surface Properties of Top - and Bottom-Fermenting Yeast // Yeast. 1997. Vol. 13. P. 931-943. https://doi.org/10.1002/(SICI)1097-0061(199708)13:10%3C931::AID-YEA149%3E3.0.CO;2-T

17. Echeverrigaray S., Scariot F.J., Menegotto M., Delamare A.P.L. Anthocyanin adsorption by Saccharomyces cerevisiae during wine fermentation is associated to the loss of yeast cell wall/membrane integrity // International journal of food microbiology. 2020. Vol. 314. P. 108383. https://doi.org/10.1016/j.ijfoodmicro.2019.108383

18. Cecchini F., Morassut M., Saiz J.C., Garcia-Moruno E. Anthocyanins enhance yeast’s adsorption of Ochratoxin A during the alcoholic fermentation // European Food Research and Technology. 2019. Vol. 245. No. 2. P. 309-314. https://link.springer.com/article/10.1007%2Fs00217-018-3162-9

19. Friis J., Ottolenghi P. The genetically determined binding of alcian blue by a minor fraction of yeast cell walls // Comptes-rendus des travaux du Laboratoire Carlsberg. 1970. Vol. 37. No. 15. P. 327. https://www.yeastgenome.org/reference/S000057170

20. Jigami Y., Odani T. Mannosylphosphate transfer to yeast mannan // Biochimica et Biophysica Acta. 1999. Vol. 1426. P. 335-345. https://doi.org/10.1016/S0304-4165(98)00134-2

21. Klis F.M., Mol P., Hellingwerf K., Brul S. Dynamics of cell wall structure in Saccharomyces cerevisiae // FEMS microbiology reviews. 2002. Vol. 26. No. 3. P. 239-256. https://doi.org/10.1111/j.1574-6976.2002.tb00613.x

22. Klis F.M., Boorsma A., De Groot P.W.J. Cell wall construction in Saccharomyces cerevisiae // Yeast. 2006. Vol. 23. P. 185-202. https://doi.org/10.1002/yea.1349

23. Leiper K.A., Stewart G.G., McKeown I.P. Beer polypeptides and silica gel Part I. Polypeptides involved in haze formation // Journal of the Institute of Brewing. 2003. Vol. 109. No. 1. P. 57-72. https://doi.org/10.1002/j.2050-0416.2003.tb00594.x

24. Leiper K.A., Stewart G.G., McKeown I.P., Nock T., Thompson M.J. Optimising beer stabilisation by the selective removal of tannoids and sensitive proteins // Journal of the Institute of Brewing. 2005. Vol. 111. No. 2. P. 118-127. https://doi.org/10.1002/j.2050-0416.2005.tb00657.x

25. Lipke P.N., Ovalle R. Cell wall architecture in yeast: new structure and new challenges // Journal of bacteriology. 1998. Vol. 180. No. 15. P. 3735-3740. https://jb.asm.org/content/180/15/3735

26. Lubbers S., Charpentier C., Feuillat M., Voilley A. Influence of yeast walls on the behavior of aroma compounds in a model wine // American Journal of Enology and Viticulture. 1994. Vol. 45. No. 1. P. 29-33. https://www.ajevonline.org/content/45/1/29

27. Mastanjevic K., Krstanovic V., Lukinac J., Jukic M., Vulin Z., Mastanjevic K. Beer - The Importance of Colloidal Stability (Non-Biological Haze) // Fermentation. 2018. Vol. 4. No. 4. P. 91. https://doi.org/10.3390/fermentation4040091

28. Morata A., Loira I., Suarez Lepe J.A. Influence of yeasts in wine colour // A. Morata, I. Loira, Eds. Grape and Wine Biotechnology. Croatia: InTech, 2016. P. 285-305. https://doi.org/10.5772/65055

29. Mozes N., Schinckus L.L., Ghommidh C., Navarro J.M., Rouxhet P.G. Influence of medium composition on surface properties and aggregation of a Saccharomyces cerevisiae strain // Colloids and Surfaces B: Biointerfaces. 1994. Vol. 3. No. 1-2. P. 63-74.https://doi.org/10.1016/0927-7765(93)01113-6

30. Odani T., Shimma Y.I., Wang X.H., Jigami Y. Mannosylphosphate transfer to cell wall mannan is regulated by the transcriptional level of the MNN4 gene in Saccharomyces cerevisiae // FEBS letters. 1997. Vol. 420. No. 2-3. P. 186-190. https://doi.org/10.1016/S0014-5793(97)01513-5

31. Orlean P. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall // Genetics. 2012. Vol. 192. No. 3. P. 775-818. https://doi.org/10.1534/genetics.112.144485

32. Patel J.K., Speers R.A., Lake J.C. Colloidal examination of worts associated with premature yeast flocculation // Journal of the American Society of Brewing Chemists. 2011. Vol. 69. No. 2. P. 81-90. https://doi.org/10.1094/ASBCJ-2011-0225-01

33. Piotrowska M., Nowak A., Czyzowska A. Removal of ochratoxin A by wine Saccharomyces cerevisiae strains // European food research and technology. 2013. Vol. 236. No. 3. P. 441-447. https://doi.org/10.1007/s00217-012-1908-3

34. Robinson A., Harrison S.T. Effect of aeration in propagation on surface properties of brewers’ yeast // A. Durieux, J.P. Simon, Eds. Applied Microbiology. Dordrecht: Springer, 2001. Vol. 2. P. 89-99. https://doi.org/10.1007/0-306-46888-3_6

35. Razmkhab S., Lopez-Toledano A., Ortega J.M., Mayen M., Merida J., Medina M. Adsorption of phenolic compounds and browning products in white wines by yeasts and their cell walls // Journal of Agricultural and Food Chemistry. 2002. Vol. 50. No. 25. P. 7432-7437. https://doi.org/10.1021/jf025733c

36. Siebert K.J., Troukhanova N.V., Lynn P.Y. Nature of polyphenol-protein interactions // Journal of Agricultural and Food Chemistry. 1996. Vol. 44. No. 1. P. 80-85. https://doi.org/10.1021/jf9502459

37. Steiner E., Becker T., Gastl M. Turbidity and haze formation in beer - Insights and overview // Journal of the Institute of Brewing. 2010. Vol. 116. No. 4. P. 360-368. https://doi.org/10.1002/j.2050-0416.2010.tb00787.x

38. Vu D.L., Sys M., Cervenka L. The Effect of Various Potentials on the Attachment of Saccharomyces Cerevisiae and Staphylococcus Epidermidis to Carbon Paste Electrodes // Int. J. Electrochem. Sci. 2011. Vol. 6. P. 5265-5274.


Review

For citations:


Meledina T.V., Manshin D.V., Golovinskaia O.V., Harbah R., Ivanova V.A., Morozov A.A. Factors Affecting the Electric Charge of Yeast Cells Saccharomyces Cerevisiae. Storage and Processing of Farm Products. 2020;(2):73-84. (In Russ.) https://doi.org/10.36107/spfp.2020.246

Views: 627


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)