Preview

Storage and Processing of Farm Products

Advanced search

Ensuring the Microbiological Safety of Food Products with The Use of Ionization Radiation

Abstract

The work is devoted to substantiation of the possibility of using ionizing radiation in the food industry in order to reduce the microbiological contamination of agricultural and food products in the process of use and long-term storage. The purpose of these studies is to justify the possibility of radiation exposure in the food industry. In the study on the effectiveness of oppression used the following strains of microorganisms: Escherichia coli ATSS derived from the strain of VCM in 114191, Staphylococcus aureus ATSS 25923 (f-49)2 derived from the strain VKM201189 and Salmonella entrica subspecies. Enterica serovar Typhimurium ATCC 140283. Irradiation was carried out at the welw accelerator-10-10-S-70 center for collective use of physical methods of research in the “ Institute of physical chemistry and electrochemistry. A. N. Frumkin of the Russian Academy of Sciences”. The results showed the dependence of the stability of the studied strains of microorganisms. Studies have shown that the most resistant to ionization radiation is the strain of Salmonella and E. coli, less resistant strain of S. aureus microorganisms. The dependence of the number of microorganisms on the dose of irradiation is non - monotonic, polymodal in nature-when processing the test of cultures with ionization irradiation from 4 to 5 kg, an increase in the growth of microorganisms for all processing conditions is observed, and only then their inhibition. With an increase in radiation doses of more than 5 kGy, the level of cell radiation damage will exceed the possibility of reducing their protective mechanisms of the cell and the dose-effect curves will correspond to the usual linear or quadratic-linear function. The decrease in the number of cells exposed to 4 kGy can be explained by the fact that at low doses, comparable to the level of natural radiation, the degree of damage to the DNA of microorganisms is too small to activate an adequate level of enzymatic repair.

About the Authors

E. D. Goryacheva
Moscow State University of Food Production
Russian Federation


A. Yu. Kolokolova
All-Russia Research Institute of Preservation Technology
Russian Federation


N. V. Ilyukhina
All-Russia Research Institute of Preservation Technology
Russian Federation


References

1. Бурлакова Е.Б., Голощапов А.Н., Жижина Г.П., Конрадов А.А. Новые аспекты закономерностей действия низкоинтенсивного облучения в малых дозах // Радиационная биология. Радиоэкология. 1999. Т. 39. № 1. С. 26-33.

2. Гельфанд С.Ю., Завьялов М.А., Петров А.Н., Прокопенко А.В., Филиппович В.П. Современные аспекты радиационной обработки пищевых продуктов // Хранение и переработка сельхозсырья. 2013. №. 2. C. 25-27.

3. Кузин A.M. Идеи радиационного гормезиса в атомном веке. М.: Наука, 1995. 158 с.

4. Чиж Т.В., Козьмин Г.В., Полякова Л.П., Мельникова Т.В. Радиационная обработка как технологический прием в целях повышения уровня продовольственной безопасности // Вестник Российской Академии Естественных Наук. 2011. № 4. C. 44-49.

5. Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T., Williams S.T. Bergey’s Manual of Determinative Bacteriology. 9th Edition. Baltimore: Williams & Wilkins, 1994.

6. Kauffman J.M. Radiation hormesis: demonstrated, deconstructed, denied, dismissed, and some implications for public policy // Journal of Scientific Exploration. 2003. Vol. 17. № 3. P. 389-407.

7. Kume T. et al. Quantity and Economic Scale of Food irradiation in the world // Food Irradiation. 2008. Vol. 43. № 1-2. P. 46-54.

8. Miteva D., Dimov K., Nacheva I., Todorov Y., Doneva M., Metodieva P., Tsvetkov T. Modern technological approaches for ensuring of harmless and quality fruits // Bulgarian Journal of Agricultural Science. 2014. Vol. 20. № 2. Р. 243-245.

9. Pollycove M., Feinendegen L.E. Radiation-induced versus endogenous DNA damage: Possible effect of inducible protective responses in mitigating endogenous damage // Human and Experimental Toxicology. 2003. Vol. 22. № 6. P. 290-306.

10. Радиационные технологии в сельском хозяйстве и пищевой промышленности / Под общ. ред. Козьмина Г.В., Гераськина С.А., Санжаровой Н.И. Обнинск: ВНИИРАЭ, 2015. 400 с.

11. Метлицкий Л.В., Рогачев В.И., Хрущев В.Г. Радиационное облучение пищевых продуктов. М.: Экономика, 1967. 159 с.

12. Bryazgin A.A., Marcov N.V. Radiation technologies: view from Russia. M.: Radtech Association, 2015. 68 p.

13. Павлов А.Н. Исследование радиологических показателей эффективности экспериментально-производственного процесса радиационной обработки сельскохозяйственной продукции растительного происхождения: автореферат. Обнинск: ВНИИРАЭ, 2016. 11 с.

14. Козьмин Г.В., Санжарова Н.И., Кибина И.И., Павлов А.Н., Тихонов В.Н. Радиационные технологии в сельском хозяйстве и пищевой промышленности // Достижения науки и техники АПК. 2015. Т. 29. № 5. C. 87-92.


Review

For citations:


Goryacheva E.D., Kolokolova A.Yu., Ilyukhina N.V. Ensuring the Microbiological Safety of Food Products with The Use of Ionization Radiation. Storage and Processing of Farm Products. 2018;(4):101-108. (In Russ.)

Views: 234


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)