Organoleptic, Physicochemical and Antioxidant Properties of Blueberrybased Snacks (Vaccínium myrtíllus)
https://doi.org/10.36107/spfp.2020.226
Abstract
For blueberries (Vaccínium myrtíllus), blueberry puree, freeze-dried snacks based on blueberry puree and freeze-dried snacks based on blueberry puree with pectin added, organoleptic parameters, soluble solids content, sugar content, titratable acidity, vitamin C content, dietary fiber, total content of phenols, flavonoids, anthocyanins, anti-radical activity according to the DPPH method, restoring strength according to the FRAP method. Organoleptic evaluation of a new type of freeze-dried snacks based on blueberry puree showed that both samples of freeze-dried snacks have attractive properties for consumers, which can contribute to their implementation as an innovative functional product. An important aspect for attracting consumers is the complete naturalness of the product and its health benefits, as a psychological factor highly appreciated by the expert commission. An increased content of soluble solids, sugars, titratable acidity, vitamin C and dietary fiber was found in freeze-dried snacks based on blueberry puree and freezedried snacks based on blueberry puree with pectin added compared to blueberries and blueberry puree. An increase in antioxidant properties (total content of phenols, flavonoids, anthocyanins), anti-radical activity, and regenerative ability of samples in a row of blueberry berries – blueberry puree – sublimated snacks based on blueberry puree – sublimated snacks based on blueberry puree with pectin was proved. It was found that the addition of pectin to sublimated snacks based on blueberry puree helps to reduce crumbling and a slight increase in dietary fiber content.
About the Authors
E. A. VasilievaRussian Federation
Ekaterina A. Vasilieva
244, Molodogvardeyskaya str., Samara, 443100
E. A. Eliseeva
Russian Federation
Elena A. Eliseeva
244, Molodogvardeyskaya str., Samara, 443100
D. F. Ignatova
Russian Federation
Dinara F. Ignatova
244, Molodogvardeyskaya str., Samara, 443100
N. V. Makarova
Russian Federation
Nadezhda V. Makarova
244, Molodogvardeyskaya str., Samara, 443100
References
1. Dubodel N.P., Pobeda M.I., Shashin D.L. Sravnitel’naya otsenka metodov analiza rastvorimykh sukhikh veshchestv v kontsentrirovannykh fruktovykh i ovoshchnykh pyure [Comparative evaluation of soluble solids analysis methods in concentrated fruit and vegetable purees]. Pivo i napitki [Beer and Beverages], 2015, no. 3,pp. 40-43.
2. Rodriguez S., Fernades F.A.N. Innovatsionnye tekhnologii pererabotki plodoovoshchnoi produktsii. [Innovative technologies for fruit and vegetable processing]. S.-Petersburg: Professiya, 2014. 453 p.
3. Akšić M.F., Tosti T., Sredojević M., Milivojević J., Meland M., Natić M. Comparison of Sugar Profile between Leaves and Fruits of Blueberry and Strawberry Cultivars Grown in Organic and Integrated Production System. Plants, 2019, vol. 8, issue 7,pp. 1-16. https://doi.org/10.3390/plants8070205
4. Alfaro S., Mutis A., Quiroz A., Segue I., Scheuermann E. Effects of Drying Techniques on Murtilla Fruit Polyphenols and Antioxidant Activity. Journal of Food Research, 2014, vol. 3, issue 5,pp. 73-82. https://doi.org/10.5539/jfr.v3n5p73
5. Butnariu M., Butu A. Chemical Composition of Vegetables and Their Products. In Cheung P. (ed.) Handbook of Food Chemistry. Berlin, Heidelberg: Springer-Verlag, 2015,pp. 627-692. https://doi.org/10.1007/978-3-642-36605-5_17
6. Cai X., Du X., Cui D., Wang X., Yang Z., ZhuG. Improvement of Stability of Blueberry Anthocyanins by Carboxymethyl Starch/Xanthan Gum Combinations Microencapsulation. Food Hydrocolloids, 2019, vol. 91,pp. 238-245. https://doi.org/10.1016/j.foodhyd.2019.01.034
7. Chea S., Yu D.J. Park J., Oh H.D., Chung S.W., Lee H.J. Preharvest Β-Aminobutyric Acid Treatment Alleviates Postharvest Deterioration of ‘Bluecrop’ Highbush Blueberry Fruit During Refrigerated Storage. Scientia Horticulturae, 2019, vol. 246, pp. 95- 103. https://doi.org/10.1016/j.scienta.2018.10.036
8. Çoklar H., Akbulut M. Effect of Sun, Oven and FreezeDrying of Black Grape. South African Journal of Enology and Viticulture, 2017, vol. 38, issue 2,pp. 264- 272. http://dx.doi.org/10.21548/38-2-2127
9. Cutler R., Gholami S., Chua J.S., Kuberan B., Babu P.V. Blueberry Metabolites Restore Cell Surface Glycosaminoglycans and Attenuate Endothelial Inflammation in Diabetic Human Aortic Endothelial Cells. International Journal of Cardiology, 2018, vol. 261,pp. 155-158. https://doi.org/10.1016/j.ijcard.2018.03.027
10. Dróżdż P., Sirgedaitė-Šėžienė V., Pyrzynska K. Phytochemical Properties and Antioxidant Activities of Extracts from Wild Blueberries and Lingonberries. Plant Foods for Human Nutrition, 2017, vol. 72, issue 4,pp. 1-5. https://doi.org/10.1007/s11130-017-0640-3
11. Gapski A., Gomes T.M., Bredun M.A., Ferreira-Lima N.E., Ludka F.K., Bordignon-Luiz M.T., Burin V.M. Digestion Behavior and Antidepressant-Like Effect Promoted by Acute Administration of Blueberry Extract on Mice. Food Research International, 2019, vol. 125,pp. 1-9. https://doi.org/10.1016/j.foodres.2019.108618
12. Ge Y., Li X., Li C., Tang Q., Duan B., Cheng Y., Hou J., Li J. Effect of Sodium Nitroprusside on Antioxidative Enzymes and the Phenylpropanoid Pathway in Blueberry Fruit. Food Chemistry, 2019, vol. 295,pp. 607-612. https://doi.org/10.1016/j.foodchem.2019.05.160
13. Ge Y., Tang Q., Li C., Duan B., Li X., Wei M., Li J. Acibenzolar-S-Methyl Treatment Enhances Antioxidant Ability and Phenylpropanoid Pathway of Blueberries During Low Temperature Storage. LWT - Food Science & Technology, 2019, vol. 110,pp. 48-53. https://doi.org/10.1016/j.lwt.2019.04.069
14. Giacalone M., Di Sacco F., Traupe I., Pagnucci N., Forfori F., Giunta F. Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease. N.Y.: Academic press, 2015. 528 P. https://doi.org/10.1016/C2012-0-06799-3
15. Gundogdu M., Kan T., Canan I. Bioactive and Antioxidant Characteristics of Blackberry Cultivars from East Anatolia. Turkish Journal of Agriculture and Forestry, 2016, vol. 40,pp. 344-351. https://doi.org/10.3906/tar-1511-78
16. Jeonga S.Y., Velmurugan P., Lim J.M., Oh B.T., Jeong D.Y. Photobiological (LED Light)-Mediated Fermentation of Blueberry (Vaccinium Corymbosum L.) Fruit with Probiotic Bacteria to Yield Bioactive Compounds. LWT - Food Science & Technology, 2018, vol. 93,pp. 158-166. https://doi.org/10.1016/j.lwt.2018.03.038
17. Jiménez-Monreal A.M., García-Diz L., Martínez-Tomé M., Mariscal M., Murcia M.A. Influence of Cooking Methods on Antioxidant Activity of Vegetables. Journal of Food Science, 2009, vol. 74, issue 3,pp. 97-103. https://doi.org/10.1111/j.1750-3841.2009.01091.x
18. Josh S.S., Howell A.B., D’Souza D.H. Antiviral Effects of Blueberry Proanthocyanidins Against Aichi Virus. Food Microbiology, 2019, vol. 82,pp. 202- 208. https://doi.org/10.1016/j.fm.2019.02.001
19. Koyuncu M.A., Dilmacunal T. Determination of Vitamin C and Organic Acid Changes in Strawberry by Hplc During Cold Storage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2010, vol. 38, issue 3,pp. 95-98. URL: https://www.notulaebotanicae.ro/index.php/nbha/article/view/4819 (accessed: 12.08.2020).
20. Kraujalyte V., Venskutonis P.R., Pukalskasa A., Česonienė L., Daubaras R. Antioxidant Properties, Phenolic Composition and Potentiometric Sensorarray Evaluation of Commercial and New Blueberry (Vaccinium Corymbosum) and Bog Blueberry (Vaccinium Uliginosum) Genotypes. Food Chemistry, 2015, vol. 188,pp. 583-590. https://doi.org/10.1016/j.foodchem.2015.05.031
21. Lang Y., Gao H., Tian J., Shu C., Sun R., Lia B., Meng X. Protective Effects of Α-Casein or Β-Casein on the Stability and Antioxidant Capacity of Blueberry Anthocyanins and Their Interaction Mechanism. LWT - Food Science & Technology, 2019, vol. 115,pp. 1-10. https://doi.org/10.1016/j.lwt.2019.108434
22. Liu B., Wang K., Shu X., Liang J., Fan X., Sun L. Changes in Fruit Firmness, Quality Traits and Cell Wall Constituents of Two Highbush Blueberries (Vaccinium Corymbosum L.) During Postharvest Cold Storage. Scientia Horticulturae, 2019, vol. 246,pp. 557-562. https://doi.org/10.1016/j.scienta.2018.11.042
23. Lü J-M., Lin P.H., Yao Q., Chen C. Chemical and Molecular Mechanisms of Antioxidants: Experimental Approaches and Model Systems. Journal of Cellular and Molecular Medicine, 2010, vol. 14, issue 4,pp. 840-860. https://doi.org/10.1111/j.1582-4934.2009.00897.x
24. Miglio C, Chiavaro E, Visconti A, Fogliano V, Pellegrini N. Effects of Different Cooking Methods on Nutritional and Physicochemical Characteristics of Selected Vegetables. Journal of Agricultural and Food Chemistry, 2008, vol. 56, issue 1,pp. 139-147. https://doi.org/10.1021/jf072304b
25. Proestos С., Varzakas T. Aromatic Plants: Antioxidant Capacity and Polyphenol Characterisation. Foods, 2017, vol. 6, issue 28,pp. 1-7. https://doi.org/10.3390/foods6040028
26. Rana V., Bachheti R.K., Chand T., Barman A. Dietary Fibre and Human Health. International Journal of Food Safety, Nutrition and Public Health (IJFSNPH), 2012, vol. 4, issue 4,pp. 101-118. https://doi.org/10.1504/IJFSNPH.2011.044528
27. Rodrigues E., Poerner N., Rockenbach I.I., Gonzaga L.V., Mendes C.R., Fett R. Phenolic Compounds and Antioxidant Activity of Blueberry Cultivars Grown in Brazil. Food Science and Technology, 2011, vol. 31, issue 4,pp. 911-917. https://doi.org/10.1590/S0101-20612011000400013
28. Shi N., Mathai M.L., Xu G., McAinch A.J., Su X.Q. The Effects of Supplementation with Blueberry, Cyanidin-3-O-Β-Glucoside, Yoghurt and its Peptides on Obesity and Related Comorbidities in a Diet-Induced Obese Mouse Model. Journal of Functional Foods, 2019, vol. 56,pp. 92-101. https://doi.org//10.1016/j.jff.2019.03.002
29. Shivembe A., Ojinnaka D. Determination of Vitamin C and Total Phenolic in Fresh and Freeze Dried Blueberries and the Antioxidant Capacity of Their Extracts. Integrative Food, Nutrition and Metabolism, 2017, vol. 4, issue 6,pp. 1-5. https://doi.org/10.15761/ifnm.1000197
30. Sun X., Zhou T., Wei C., Lan W., Zhao Y., Pan Y., Wu V.C. Antibacterial Effect and Mechanism of Anthocyanin Rich Chinese Wild Blueberry Extract on Various Foodborne Pathogens. Food Control, 2018, vol. 94,pp. 155-161. https://doi.org//10.1016/j.foodcont.2018.07.012
31. Türck P., Fraga S., Salvador I., Campos-Carraro C., Bahr A., Ortiz V., Hickmann A., Koetz M., Belló-Klein A., Henriques A., Agostini F., Araujo A. Blueberry Extract Decreases Oxidative Stress and Improves Functional Parameters in Lungs from Rats with Pulmonary Arterial Hypertension. Nutrition, 2020, vol. 70,pp. 1-33. https://doi.org/10.1016/j.nut.2019.110579
32. Vauzour D. Dietary Polyphenols as Modulators of Brain Functions: Biological Actions and Molecular Mechanisms Underpinning Their Beneficial Effects. Oxidative Medicine and Cellular Longevity, 2012, vol. 2012. https://doi.org/10.1155/2012/914273
33. Wang H., Wu Y., Yu R., Wu C., Fan G., Li T. Effects of Postharvest Application of Methyl Jasmonate on Physicochemical Characteristics and Antioxidant System of the Blueberry Fruit. Scientia Horticulturae, 2019, vol. 258,pp. 1-8. https://doi.org//10.1016/j.scienta.2019.108785
34. Yang J.Y. Shi W., Li B., Bai Y., Hou Z. Preharvest and Postharvest UV Radiation Affected Flavonoid Metabolism and Antioxidant Capacity Differently in Developing Blueberries (Vaccinium Corymbosum L.). Food Chemistry, 2019, vol. 301.pp. 1-11. https://doi.org/10.1016/j.foodchem.2019.125248
35. Zhou L., Xiec M., Yang F., Liu J. Antioxidant Activity of High Purity Blueberry Anthocyanins and the Effects on Human Intestinal Microbiota. LWT - Food Science & Technology, 2020, vol. 117,pp. 1-12. https://doi.org/10.1016/j.lwt.2019.108621
Review
For citations:
Vasilieva E.A., Eliseeva E.A., Ignatova D.F., Makarova N.V. Organoleptic, Physicochemical and Antioxidant Properties of Blueberrybased Snacks (Vaccínium myrtíllus). Storage and Processing of Farm Products. 2020;(3):102-117. (In Russ.) https://doi.org/10.36107/spfp.2020.226