Amino Acid Composition of Protein Concentrates from Secondary Products of Food Production and Alternative Raw Materials
https://doi.org/10.36107/spfp.2020.330
Abstract
The aim of the research is a comparative analysis of the biological value of protein concentrates obtained from secondary products of grain processing for starch with the use of microorganisms S. cerevisiae121, G. candidum977, P. ostreatus, L. acidophilus, S. thermophilus, and with the use of insect larvae Musca domestica, Tenebrio molitor, Bombyx morigrown on wheat bran, poultry manure and mulberry leaves. The results of determining the amino acid composition and the rate of proteins of feed microbial-plant concentrates (FMPC), the biomass for which was grown with all types of larvae, and also on oat and pea whey remaining after the isolation of food proteins from extracts - secondary products of starch production, testified to their 100% biological value. The extracts from which the whey was obtained should have a ratio of pea and oat proteins of 2:1, and the whey should be modified into a full-fledged F.P. by symbiosis of microorganisms G. candidumand S. сerevisiae121. These types of preparations can be recommended for introduction into the composition of feed instead of animal proteins as independent ingredients, and preparations from triticale extract, products of its processing and corn extracts obtained, respectively, with P. ostreatus, S. cerevisiae121 and L. acidophilus, S. thermophilus- together with other protein products in compliance with the principle of complementarity of essential amino acids. Practical implementation of the proposed methods for the transformation of organic waste will allow rational use of secondary material resources and obtain demanded protein concentrates.
About the Authors
R. UlanovaRussian Federation
Ruzaliya V. Ulanova
7, 60th anniversary of October Avenue, Moscow, 107143
V. Kolpakova
Russian Federation
Valentina V. Kolpakova
11, Nekrasova str., Kraskovo, Moscow region, 140051
D. Kulikov
Russian Federation
Denis S. Kulikov
11, Nekrasova str., Kraskovo, Moscow region, 140051
E. Evlagina
Russian Federation
Elena G. Evlagina
13, Pushkina str., Zheleznovodsk, Inozemtsevo, Stavropol Territory, 357431
References
1. Andreev N.R., Kolpakova V.V. Gol’dshtein V.G. K voprosu glubokoi pererabotki zerna triticale [On the issue of deep processing of triticale grain]. Pishchevaya promyshlennost’ [Food industry], 2018, no. 9, pp. 30–33.
2. Andreev N.R., Kolpakova V.V., Kravchenko I.K., Ula nova R.V., Shevyakova L.V., Makarenko M.A., Lu kin N.D. Utilizatsiya vtorichnykh produktov pererabot ki tritikale s polucheniem kormovogo mik robnorastitel’nogo kontsentrata dlya prudovykh ryb [Utilization of secondary products of triticale processing to obtain microbial and plant feed concentrate for pond fish]. Yug Rossii: ekologiya. Razvitie [South of Russia: ecology. Development], 2017, no. 4, pp. 90–104. https://doi.org/10.18470/1992–1098–2017–4-90–104
3. Belik S.N., Morgul’ E.V., Kryuchkova V.V., Avetisyan Z.E. Produkty mikrobnogo sinteza v reshenii problemy belkovogo defitsita [Microbial synthesis products in solving the problem of protein deficiency]. Wschodnioeuropejskie czasopismo naukowe [East European scientific journal], 2016, vol. 7, issue 1, pp. 122–129.
4. Druzhinin P.V., Shkiperova G.T., Prokop’ev E.A. Vliyanie izmeneniya klimata na sel’skoe khozyaistvo rossiiskikh regionov [Impact of climate change on agriculture in Russian regions]. Regionologiya [Regionology], 2015, vol. 91, no 2, pp. 56–63.
5. Kadomtseva M.E., Korostelev V.G. Vliyanie global’nykh klimaticheskikh izmenenii na sostoyanie mirovykh zemel’nykh resursov [The impact of global climate change on the state of the world’s land resources]. Ustoichivoe razvitie mirovogo sel’skogo khozyaistva [Sustainable Development of World Agriculture], 2017, no. 1, pp, 222–224.
6. Korostelev V.G., Kadomtseva M.E. Agrostrakhovanie kak element klimaticheski optimizirovannogo sel’skogo khozyaistva [Agricultural insurance as an element of climate-smart agriculture]. Mezhdunarodnyi sel’skokhozyaistvennyi zhurnal [International Agricultural Journal], 2018, vol. 365, no. 5, pp. 38–42. https://doi.org/10.24411/2587–6740–2018–15074
7. Son O.M., Cherevach E.I., Tekut’eva L.A. Ispol’zovanie otkhodov zernopererabatyvayushchei promyshlennosti v mikrobiologicheskom sinteze kormovogo belka [The use of wastes from the grain processing industry in the microbiological synthesis of fodder protein]. Khranenie i pererabotka sel’khozsyr’ya [Storage and processing of farm products], 2016, no. 12, pp, 24–27.
8. Ulanova R.V., Kravchenko I.K., Kolpakova V.V. Kompleksnaya pererabotka lichinok komnatnoi mukhi s ispol’zovaniem biologicheskikh metodov [Complex processing of house fly larvae using biological methods]. Aktual’naya biotekhnologiya [Actual biotechnology], 2018, vol. 26, no. 3, pp, 252–254.
9. Ulanova R.V., Kuznetsov B.B., Aksenov A.V. Tekhnologiya proizvodstva novogo belkovogo preparata [Technology for the production of a new protein preparation]. Kombikorma [Compound feed], 2005, no. 2, pp. 47.
10. Khamnaeva N.I., Kondrasheva E.V. Ob ispol’zovanii mikrobnoi biomassy dlya polucheniya novykh konditerskikh izdelii [On the use of microbial biomass to produce new confectionery]. Uspekhi sovremennogo estestvoznaniya [Advances in modern natural science], 2004, no. 4, pp. 136.
11. Yashalova N.N., Ruban D.A. Dolgovremennye riski rossiiskogo rastenievodstva v usloviyakh global’nykh izmenenii klimata v kontekste prodovol’stvennoi bezopasnosti [Long-term risks of Russian crop production in the context of global climate change in the context of food security]. Regional’naya ekonomika: teoriya i praktika [Regional economy: theory and practice], 2018, vol. 16, no. 6, pp. 1127–1140. https://doi.org/10.24891/re.16.6.1127
12. Aggelopoulos T., Bekatorou A., Pandey A., Kanellaki M., Koutinas A.A. Discarded Oranges And Brewer’s Spent Grains as Promoting Ingredients for Microbial Growth by Submerged and Solid State Fermentation of Agro-Industrial Waste Mixtures. Applied Biochemistry and Biotechnology, 2013, vol. 170, issue 8, pp. 1885–1895. https://doi.org/10.1007/s12010–013–0313–0
13. Ahmed S., Ahmad F., Hachmi A.S. Production of Microbial Biomass Protein by Fermennanion of Arachniotus Sh., and Candida Utilis. Pakistan Journal of Botany, 2010, vol. 42, issue 2, pp. 1225–1234.
14. Van Huis A. Edible Insects Contributing to Food Security. Agriculture & Food Security, 2015, vol. 4, no, 20, pp. 2–4. https://doi.org/10.1186/s40066–015–0041–5
15. Athar M.S., Ahmed S., Hashmi A.S. Bioconversion of Beet Pulp to Microbial Biomass Protein by Candida Utilis. Journal of the Chemical Society of Pakistan, 2009, vol. 31, pp. 115–121.
16. Ganda H., Zannou-Boukari E.T., Kenis M., Chrysostome C.A.A.M., Mensah G.A. Potentials of Animal, Crop and Agri-Food Wastes for The Production of Fly Larvae. Journal of Insects as Food and Feed, 2019, vol. 5, no. 2, pp. 59–67. https://doi.org/10.3920/JIFF2017.0064
17. Han R., Shin J.T., Kim J., Choi Y.S., Kim Y.W. An Overview of The South Korean Edible Insect Food Industry: Challenges and Future Pricing/Promotion Strategies. Entomological Research, 2017, vol. 47, issue 3, pp. 139–216. https://doi.org/10.1111/1748–5967.12230
18. Irshad M., Ahmed S., Latif F., Rajoka M.I. Regulation of Endo- β-d- Xylanase and β- Xylosidase Synthesis in Humicola Lanuginosa. Journal of the Chemical Society of Pakistan, 2008, vol. 30, pp. 913–918.
19. Pachauri R.K., Meyer L.A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and I.I.to the Fifth Assessment Report of the Intergovernmental Panel on Climate. I.C., Geneva, Switzerland, 2014. 151 p. U.L. https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed 10.08.2020).
20. Jaganmohan P.B., Purushottam D., Prasad S.V. Produc tion of Single Cell Protein (SCP) with Aspergillus terreus Using Solid State Fermentation. European Journal of Biological Sciences, 2013, vol. 5, issue 2, pp. 38–43. https://doi.org/10.5829/idosi.ejbs.2013.5.2.7210
21. Megido R.C., Desmedt S., Blecker C., Béra F., Haubruge E.T., Alabi T., Francis F. Microbiological Load of Edible Insects Found in Belgium. Insects, 2017, vol. 8, issue 1, pp. 12. https://doi.org/10.3390/insects8010012
22. Nurudeen O.O., Adetayo O.M., Bolanle A.S.R., Olaltunde O.A.L. Cellulase and Biomass Production from Sorghum (Sorghum guineense) Waste by Trichoderma longibrachiatumand Aspergillus terreus. Journal of Microbiology Research, 2015, vol. 5, issue 6, pp. 169–174. https://doi.org/10.5923/j.microbiology.20150506.01
23. Oshoma C.E., Ikenebomeh M.J. Production of Aspergillus Niger Biomass from Rice Bran. Pakistan Journal of Nutrition, 2005, vol. 4, issue 1, pp. 32–36. https://doi.org/10.3923/pjn.2005.32.36
24. Pavela R., Benelli G., Petrelli R., Cappellacci L., Lupidi G., Sut S., Dall’Acqua S., Maggi F. Exploring the Insecticidal Potential of Boldo (Peumus boldus) Essential Oil: Toxicity to Pests and Vectors and Non-Target Impact on the Microcrustacean Daphnia Magna. Molecules, 2019, vol. 24, issue 5, pp. 879. https://doi.org/10.3390/molecules24050879
25. Premalatha M., Abbasi T., Abbasi T., Abbasi S.A. Energy-Efficient Food Production to Reduce Global Warming and Ecodegradation: The use of Edible Insects. Renewable and Sustainable. Energy Reviews, 2011, vol. 15, issue 9, pp. 4357–4360. https://doi.org/10.1016/j.rser.2011.07.115
26. Anupama, Ravindra P. Value added Food: Single cell protein. Biotechnology Advances, 2000, vol. 18, issue 6, pp. 459–479. https://doi.org/10.1016/S0734–9750(00)00045–8
27. Rumpold B., Schlüter O. Potential and Challenges of Insects as an Innovative Source for Food and Feed Production. Innovative Food Science & Emerging Technologies, 2013, vol. 17, pp. 1–11. https://doi.org/10.1016/j.ifset.2012.11.005
28. Sanou A.G., Sankara F., Pousga S., Coulibaly K., Nacoulma J.P., Kenis M., Clottey V.A., Nacro S., Somda I., Ouedraogo I. Indigenous Practices in Poultry Farming Using Maggots in Western Burkina Faso. Journal of Insects as Food and Feed, 2020, vol. 4, no. 4, pp, 219–228. https://doi.org/10.3920/JIFF2018.0004
29. Sirimungkararat S., Saksirirat W., Nopparat T., Natongkham A. Edibleproducts from Eri Silkworm (Samia Ricini D.) and Mulberry Silkworm (Bombyx Mori L.) In Thailand. In Forest Insects as Food: Humans Bite Back, Proceedings of a Workshop on Asia-Pacific Resources and Their Potential for Development. Chiang Mai, Thailand, 2008, pp. 189–200.
30. Suman G., Nupur M., Anuradha S., Pradeep B. Single Cell Protein Production: A.R.view. International Journal of Current Microbiology and Applied Sciences, 2015, vol. 4, no. 9, pp. 251–262. U.L. https://www.ijcmas.com/vol-4–9/Gour%20Suman,%20et%20al.pdf (accessed 10.08.2020).
31. Ulanova R., Kravchenko I. Development and Evaluation of Novel Insect-Based Milk Substitute. International Journal of Engineering Science and Innovative Technology, 2014, vol. 3, no. 6, pp. 286–291.
32. Ulanova R., Kravchenko I. Housefly Larvae as a Source of Good Quality Renewable Protein Product 1. Entomology and Applied Science Letters, 2016, vol. 3, no. 5, pp. 182–188. https://easletters.com/en/article/shi2-housefly-larvae-as-a-source-of-goodquality-renewable-protein-product (accessed 10.08.2020).
33. Van der Spiegel M., Noordam M.Y., Van der FelsKlerx H.J. Safety of Novel Protein Sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and Legislative Aspects for Their Application in Food and Feed Production. Comprehensive Reviews in Food Science and Food Safety, 2013, vol. 12, issue 6, pp. 662–678. https://doi.org/10.1111/1541–4337.12032
34. Van Huis A. Potential of Insects as Food and Feed in Assuring Food Security. Annual Review of Entomology, 2013, vol. 58, pp. 563–583. https://doi.org/10.1146/annurev-ento-120811–153704
35. Varelas V. Food Wastes as a Potential New Source for Edible Insect Mass Production for Food and Feed. Fermentation-Basel, 2019, vol. 5, issue 3, pp. 81. https://doi.org/10.3390/fermentation5030081
36. Zhou J., Han D. Safety Evaluation of Protein of Silkworm (Antheraeapernyi) Pupae. Food and Chemical Toxicology, 2005, vol. 44, issue 7, pp. 1123–1130. https://doi.org/10.1016/j.fct.2006.01.009
Review
For citations:
Ulanova R., Kolpakova V., Kulikov D., Evlagina E. Amino Acid Composition of Protein Concentrates from Secondary Products of Food Production and Alternative Raw Materials. Storage and Processing of Farm Products. 2020;(4):89-103. (In Russ.) https://doi.org/10.36107/spfp.2020.330