Preview

Storage and Processing of Farm Products

Advanced search

Inhibition of lipolytic activity in model food systems

https://doi.org/10.36107/spfp.2021.213

Abstract

Lipolytic spoilage of food products is increasingly becoming the reason for the rejection of confectionery products. This is due to several major factors - the use of lauric-type cocoa butter substitutes and food requirements of increasing shelf life. The use of lauric-type cocoa butter substitutes may lead to organoleptic during the storage of confectionery products, which is expressed in the appearance of an off-odor, soapy taste, rancid taste, etc. These phenomena are caused by the hydrolytic processes of decomposition of products fats, which occurs under the influence of the lipase enzyme.These enzymes (EC 3.1.1.3) have substrate specificity for fats. The aim of this work was to study possible ways of lipase inhibition in model food systems. The effect on lipolytic activity in model food systems of widely used in the food industry organic acids, gelling agents and metal ions has been studied. The change in lipase activity from porcine pancreas in model samples was determined by a method based on the oxidation of indoxyl acetate. It was confirmed that an almost complete inhibition of lipolytic activity occurs at a citric acid concentration of 0.5 mol/l or more. When using a citric acid concentration of 0.15 mol / l, a suppression of lipolytic activity by 10% relative to the control sample was revealed. It was found that agar-agar, as well as calcium ions, significantly increase lipolytic activity. The results obtained contribute to the development of glazed confectionery formulations containing lauric fats, with a reduced risk of lipolytic spoilage and an increased shelf life.

About the Authors

Mikhail A. Lavrukhin
All-Russian Scientific Research Institute of the Confectionery Industry
Russian Federation


Oksana S. Rudenko
All-Russian Scientific Research Institute of the Confectionery Industry
Russian Federation


Nikolay B. Kondratyev
All-Russian Scientific Research Institute of the Confectionery Industry
Russian Federation


Alla E. Bazhenova
All-Russian Scientific Research Institute of the Confectionery Industry
Russian Federation


Maxim V. Osipov
All-Russian Scientific Research Institute of the Confectionery Industry
Russian Federation


References

1. Ado M.A., Abas F., Mohammed A.S., Ghazali H.M. Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound // Molecules. 2013. Vol. 18(12). P. 14651–14669. https://doi.org/10.3390/molecules181214651

2. Almeida R. V., Alquéres S. M. C., Larentis A. L., et al. Cloning, expression, partial characterization and structural modeling of a novel esterase from Pyrococcus furiosus // Enzyme and Microbial Technology. 2006. Vol. 39(5). P. 1128–1136. https://doi.org/10.1016/j.enzmictec.2006.02.021

3. Birari, R. B., Bhutani, K. K. Pancreatic lipase inhibitors from natural sources: unexplored potential // Drug Discovery Today. 2007. Vol. 12(19-20). P. 879–889. https://doi.org/10.1016/j.drudis.2007.07.024

4. Bustanji Y., Mohammad M., Hudaib M. Screening of some medicinal plants for their pancreatic lipase inhibitory potential // Jordan Journal of Pharmaceutical Sciences. 2011. Vol. 4(2). P. 81–88.

5. Chahinian H., Vanot G., Ibrik A., Rugani N., Sarda L., Comeau L.C. Production of extracellular lipases by Penicillium cyclopium purification and characterization of a partial acylglycerol lipase // Biosci. Biotechnol. Biochem. 2000. Vol. 64. P. 215-222. https://doi.org/10.1271/bbb.64.215

6. Contesini F.J. et al. Aspergillus Lipases: Biotechnological and Industrial Application. In: Mérillon JM., Ramawat K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. 2017. P. 639-666. https://doi.org/10.1007/978-3-319-25001-4_17

7. Ferreira A.N., Ribeiro D.D.S., Santana R.A., Felix A.C.S., Alvarez L.D.G., Lima E.O., De Freitas J.S., Valasques Junior G.L., Franco M., Nascimento Junior B.B. Production of lipase from Penicillium sp. using waste oils and Nopalea cochenillifera // Chemical Engineering Communications. 2017. Vol. 204(10). P. 1167-1173. https://doi.org/10.1080/00986445.2017.1347567

8. Guerrand D. Lipases industrial applications: focus on food and agroindustries //

9. OCL. 2017. Volume 24(4). P. 1-7. https://doi.org/10.1051/ocl/2017031

10. Hasan F., Shah A., Hameed A. Industrial applications of microbial lipases // Enzyme Microb. Technol. 2006. Vol. 39(2). P. 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016

11. Hasan F., Shah A., Hameed A. Methods for detection and characterization of lipases: A comprehensive review // Biotechnol. Adv. 2009. Vol. 27. P. 782-798. https://doi.org/10.1016/j.biotechadv.2009.06.001

12. Houde A., Kademi A., Leblanc D. Lipases and their industrial applications. An overview // Appl. Biochem. Biotechnol. 2004. Vol. 118. P. 155-170. https://doi.org/10.1385/ABAB:118:1-3:155

13. Kashmiri M.A., Adnan A., Butt B.W. Production, purification and partial characterization of lipase from Trichoderma viride // African J. Biotechnol. 2006. Vol. 5. P. 878-882.

14. Khan F.I., Lan D., Durrani R., Huan W., Zhao Z., Wang Y. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties // Front. Bioeng. Biotechnol. 2017. Vol. 5. 16 p. https://doi.org/10.3389/fbioe.2017.00016

15. Kumar A., Mukhia S., Kumar N., Acharya V., Kumar S., Kumar R. A Broad Temperature Active Lipase Purified From a Psychrotrophic Bacterium of Sikkim Himalaya With Potential Application in Detergent Formulation // Front. Bioeng. Biotechnol. 2020. Vol. 8(642). P. 1-16. https://doi.org/10.3389/fbioe.2020.00642

16. Pesterev M.A., Bazhenova A.Y., Rudenko O.S. Vliyaniye skorosti vlagoperenosa na izmeneniye aktivnosti lipazy v glazirovannykh muchnykh konditerskikh izdeliy // Sbornik nauchnykh trudov XIII Mezhdunarodnoy nauchno-prakticheskoy konferentsii molodykh uchenykh i spetsialistov organizatsiy v sfere sel'skokhozyaystvennykh nauk / VNIIMS – filial FGBNU «Federal'nyy nauchnyy tsentr pishchevykh sistem im. V.M. Gorbatova» RAN, 29–30 oct. 2019. Uglich, 2019. P. 256-262.

17. Printseva A.A., Sharova N.Yu., Vybornova T.V. Research of invertase activity when changing the parameters of the fermentation process sugar-mineral medium and hydrolysate of starch by the micromycete Aspergillus Niger // Food systems. 2018. Vol. 1. P. 19-23. https://doi.org/10.21323/2618-9771-2018-1-1-19-23

18. Retseptury na marmelad, pastilu i zefir / Eds: L.S. Ivanushko, G.I. Kruglovoy, I.I. Morozovoy, A.P. Serika, Y.I. Yakubovicha. M.: Pishchevaya Promyshlennost', 1974. 209 p.

19. Rudenko O.S., Kondratiev N.B., Pesterev M.A., Bazhenova A.Y., Linovskaya N.V. Vzaimosvyaz' aktivnosti lipazy i skorosti vlagoperenosa v pryanikakh, glazirovannykh konditerskoy glazur'yu na osnove zhirov laurinovogo tipa // Vestnik VGUIT. 2019. T. 81(4). P. 62-70. https://doi.org/10.20914/2310-1202-2019-4-62-70

20. Shamel M.M., Ramachandran K.B., Hasan M. Operational Stability of Lipase Enzyme: Effect of Temperature and Shear // Dev. Chem. Eng. Mineral Process. 2005. Vol. 13(5/6). P. 599-604.

21. Skokan L.Y., Rudenko O.S., Osipov M.V., Kondratiev N.B., Parashina F.I. Lipaza kak odin iz faktorov konkurentosposobnosti konditerskikh izdeliy // Konditerskoye proizvodstvo. 2015. T. 4. P. 19-21.

22. Tablitsy khimicheskogo sostava i kaloriynosti rossiyskikh produktov pitaniya: Spravochnik / Eds: I.M. Skurikhin, V.A. Tutel'yan. M.: DeLi print, 2007. 275 p.

23. Talbot G. Fats for chocolate and sugar confectionery. In: K.K. Rajah (Ed.) Fats in food technology (2nd ed.). Wiley Blackwell, West Sussex, UK. 2014. P. 153-184. https://doi.org/10.1002/9781118923597.ch7

24. Toma A., Makonnen E., Mekonnen Y., Debella A., Addisakwattana S. Intestinal alpha-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves // BMC Complementary and Alternative Medicine. 2014. Vol. 14(180). P. 5 https://doi.org/10.1186/1472-6882-14-180

25. Vardanega R., Remonatto D., Arbter F., Polloni A., Rigo E., Ninow L.N., Treichel H., Oliveira D., Luccio M. A systematic study on extraction of lipase obtained by solid-state fermentation of soybean meal by a newly isolated strain of Penicillium sp. // Food Process. Technol. 2010. Vol. 3. P. 461-465.

26. Wang Y., Ma R., Li S., Gong M., Yao B., Bai Y., Gu J. An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry // AMB Express. 2018. Vol. 8(95). P. 1-11. https://doi.org/10.1186/s13568-018-0618-z

27. Winkler F.K., Arcy, A.D. Hunziker W. Structure of human pancreatic lipase // Nature. 1990. Vol. 343. P. 771-774. https://doi.org/10.1038/343771a0

28. Yu X., Xu Y., Xiao R. Lipases from the genus Rhizopus: characteristics, expression, protein engineering and application // Prog. Lipid. Res. 2016. Vol. 64. P. 57–68. https://doi.org/10.1016/j.plipres.2016.08.001


Review

For citations:


Lavrukhin M.A., Rudenko O.S., Kondratyev N.B., Bazhenova A.E., Osipov M.V. Inhibition of lipolytic activity in model food systems. Storage and Processing of Farm Products. 2021;(2):75-85. (In Russ.) https://doi.org/10.36107/spfp.2021.213

Views: 673


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)