Preview

Storage and Processing of Farm Products

Advanced search

Improvement of the Structural Properties of a Ferrous Milk Product by Introducing Modified Whey Proteins

https://doi.org/10.36107/spfp.2022.342

Abstract

Foreword: Ultraviolet (UV) irradiation is used as a catalyst for the denaturation and polymerization of whey proteins in milk. However, the area of using UV polymerized whey proteins in the technology of fermented milk products remains little studied. 
Aim: The aim of the study was to determine the regularities of the impact of UV irradiation on the physicochemical changes in whey proteins and their effect on the parameters of fermented milk model systems. 
Materials and methods: In the study, a flow type UV pilot reactor was used (254 nm, radiation flux 7.3 W, gap 400 μm, flow rate 6.67 ml/s). Protein solubility and the degree of β-lactoglobulin denaturation by HPLC were evaluated as indicators of protein UV denaturation. In fermented milk products, the water-retaining capacity was evaluated and structural and mechanical parameters. 
Results: The greatest effect of protein aggregation with increasing UV dose from 0 to 185 J/mL was achieved in a solution of whey protein concentrate (WPC) with ppm. protein 3.0%, expressed by a decrease in protein solubility from (92 ± 1.67) to (31 ± 2.1)% and an increase in the degree of β-lactoglobulin denaturation from (20 ± 2.4) to (94 ± 2.7)%. A sample of a fermented milk product containing a 60% irradiated WPC solution (37 J/ml) showed a threefold increase in strength characteristics to (5.7 ± 0.1) kPa, as well as a twofold decrease in the degree of viscosity loss ( 33.3%). 
Applying the results: The obtained results of the work will be the basis for further research on the optimization of UV irradiation of whey protein solutions for their use in the technology of fermented milk products.

About the Authors

Ksenia A. Riazantseva
All-Russian Dairy Research Institute
Russian Federation


Natalia E. Sherstneva
All-Russian Dairy Research Institute
Russian Federation


Nikolay A. Zhizhin
All-Russian Dairy Research Institute
Russian Federation


References

1. Alberini, F., Simmons, M. J. H., Parker, D. J., & Koutchma, T. (2015). Validation of hydrodynamic and microbial inactivation models for UV-C treatment of milk in a swirl-tube ‘SurePure TurbulatorTM’. Journal of Food Engineering, 162, 63–69. https://doi.org/10.1016/j.jfoodeng.2015.04.009

2. Ansari, J. A., Ismail, M., & Farid, M. (2019). Investigate the efficacy of UV pretreatment on thermal inactivation of Bacillus subtilis spores in different types of milk. Innovative Food Science and Emerging Technologies, 52(July 2018), 387–393. https://doi.org/10.1016/j.ifset.2019.02.002

3. Blázquez, E., Rodríguez, C., Ródenas, J., Navarro, N., Riquelme, C., Rosell, R., … Polo, J. (2019). Evaluation of the effectiveness of the SurePure Turbulator ultraviolet-C irradiation equipment on inactivation of different enveloped and non-enveloped viruses inoculated in commercially collected liquid animal plasma. PLOS ONE, 14(2), e0212332. https://doi.org/10.1371/journal.pone.0212332

4. Cappozzo, J. C., Koutchma, T., & Barnes, G. (2015). Chemical characterization of milk after treatment with thermal (HTST and UHT) and nonthermal (turbulent flow ultraviolet) processing technologies. Journal of Dairy Science, 98(8), 5068–5079. https://doi.org/10.3168/JDS.2014-9190

5. Cilliers, F. P., Gouws, P. A., Koutchma, T., Engelbrecht, Y., Adriaanse, C., & Swart, P. (2014). A microbiological, biochemical and sensory characterisation of bovine milk treated by heat and ultraviolet (UV) light for manufacturing Cheddar cheese. Innovative Food Science & Emerging Technologies, 23, 94–106. https://doi.org/10.1016/j.ifset.2014.03.005

6. de Castro, R. J. S., Domingues, M. A. F., Ohara, A., Okuro, P. K., dos Santos, J. G., Brexó, R. P., & Sato, H. H. (2017). Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Structure, 14, 17–29. https://doi.org/10.1016/j.foostr.2017.05.004

7. Delorme, M. M., Guimarães, J. T., Coutinho, N. M., Balthazar, C. F., Rocha, R. S., Silva, R., … Cruz, A. G. (2020). Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in Food Science and Technology, 102(March), 146–154. https://doi.org/10.1016/j.tifs.2020.06.001

8. Díaz, O., Candia, D., & Cobos, Á. (2016). Effects of ultraviolet radiation on properties of films from whey protein concentrate treated before or after film formation. Food Hydrocolloids, 55, 189–199. https://doi.org/10.1016/j.foodhyd.2015.11.019

9. Engin, B., & Karagul Yuceer, Y. (2012). Effects of ultraviolet light and ultrasound on microbial quality and aroma-active components of milk. Journal of the Science of Food and Agriculture, 92(6), 1245–1252. https://doi.org/10.1002/jsfa.4689

10. Fang, T., & Guo, M. (2019). Physicochemical, texture properties, and microstructure of yogurt using polymerized whey protein directly prepared from cheese whey as a thickening agent. Journal of Dairy Science, 102(9), 7884–7894. https://doi.org/10.3168/JDS.2018-16188

11. Hariono, B., Wijaya, R., & Bakri, A. (2020). Comparative study on the chemical and microbiological properties of goat milk pasteurization through serial and circulation systems of ultraviolet method. Journal of Physics: Conference Series, 1450(1), 012005. https://doi.org/10.1088/1742-6596/1450/1/012005

12. Hu, G., Zheng, Y., Liu, Z., Deng, Y., & Zhao, Y. (2016). Structure and IgE-binding properties of α-casein treated by high hydrostatic pressure, UV-C, and far-IR radiations. Food Chemistry, 204, 46–55. https://doi.org/10.1016/j.foodchem.2016.02.113

13. Keklik, N. M., Elik, A., Salgin, U., Demirci, A., & Koçer, G. (2019). Inactivation of Staphylococcus aureus and Escherichia coli O157:H7 on fresh kashar cheese with pulsed ultraviolet light. Food Science and Technology International, 25(8), 680–691. https://doi.org/10.1177/1082013219860925

14. Koutchma, T. (2019). Advances in UV-C Light Technology Improve Safety and Quality Attributes of Juices, Beverages, and Milk Products | Food Safety.

15. Kristo, E., Hazizaj, A., & Corredig, M. (2012). Structural changes imposed on whey proteins by UV irradiation in a continuous UV light reactor. Journal of Agricultural and Food Chemistry, 60(24), 6204–6209. https://doi.org/10.1021/jf300278k

16. Kuan, Y. H., Bhat, R., & Karim, A. A. (2011). Emulsifying and Foaming Properties of Ultraviolet-Irradiated Egg White Protein and Sodium Caseinate. Journal of Agricultural and Food Chemistry, 59(8), 4111–4118. https://doi.org/10.1021/JF104050K

17. Kumar, A., Nayak, R., Purohit, S. R., & Rao, P. S. (2021). Impact of UV-C irradiation on solubility of Osborne protein fractions in wheat flour. Food Hydrocolloids, 110, 105845. https://doi.org/10.1016/J.FOODHYD.2020.105845

18. Lacivita, V., Conte, A., Manzocco, L., Plazzotta, S., Zambrini, V. A., Del Nobile, M. A., & Nicoli, M. C. (2016). Surface UV-C light treatments to prolong the shelf-life of Fiordilatte cheese. Innovative Food Science & Emerging Technologies, 36, 150–155. https://doi.org/10.1016/J.IFSET.2016.06.010

19. Louis Bresson, J., Burlingame, B., Dean, T., Fairweather-Tait, S., Heinonen, M., Ildico Hirsch-Ernst, K., … Schlatter, J. (2016). Safety of UV-treated milk as a novel food pursuant to Regulation (EC) No 258/97 EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Panel members. EFSA Journal, 14(1), 4370. https://doi.org/10.2903/j.efsa.2016.4370

20. Nicolai, T., Britten, M., & Schmitt, C. (2011). β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 25(8), 1945–1962. https://doi.org/10.1016/J.FOODHYD.2011.02.006

21. Ochoa-Velasco, C. E., Díaz-Lima, M. C., Ávila-Sosa, R., Ruiz-López, I. I., Corona-Jiménez, E., Hernández-Carranza, P., … Guerrero-Beltrán, J. A. (2018). Effect of UV-C light on Lactobacillus rhamnosus, Salmonella Typhimurium, and Saccharomyces cerevisiae kinetics in inoculated coconut water: Survival and residual effect. Journal of Food Engineering, 223, 255–261. https://doi.org/10.1016/J.JFOODENG.2017.10.010

22. Peng, K., Koubaa, M., Bals, O., & Vorobiev, E. (2020). Recent insights in the impact of emerging technologies on lactic acid bacteria: A review. Food Research International, 137, 109544. https://doi.org/10.1016/J.FOODRES.2020.109544

23. Pisanello, D., & Caruso, G. (2018). Novel Foods in the European Union. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-93620-8

24. Ricciardi, F. E., Pedros-Garrido, S., Papoutsis, K., Lyng, J. G., Conte, A., & Nobile, M. A. Del. (2020). Novel Technologies for Preserving Ricotta Cheese: Effects of Ultraviolet and Near-Ultraviolet-Visible Light. https://doi.org/10.3390/foods9050580

25. Schmid, M., Held, J., Hammann, F., Schlemmer, D., & Noller, K. (2015). Effect of UV-Radiation on the Packaging-Related Properties of Whey Protein Isolate Based Films and Coatings. Packaging Technology and Science, 28(10), 883–899. https://doi.org/10.1002/PTS.2150

26. Sindayikengera, S., & Xia, W. (2006). Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex. Journal of Zhejiang University SCIENCE B, 7(2), 90–98. https://doi.org/10.1631/jzus.2006.B0090

27. Singh, H., Bhardwaj, S. K., Khatri, M., Kim, K. H., & Bhardwaj, N. (2021). UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chemical Engineering Journal, 417, 128084. https://doi.org/10.1016/J.CEJ.2020.128084

28. Ustunol, Z., & Mert, B. (2004). Water solubility, mechanical, barrier, and thermal properties of cross-linked whey protein isolate-based films. Journal of Food Science, 69(3), FEP129–FEP133. https://doi.org/10.1111/J.1365-2621.2004.TB13365.X

29. Vásquez-Mazo, P., Loredo, A. G., Ferrario, M., & Guerrero, S. (2019). Development of a Novel Milk Processing to Produce Yogurt with Improved Quality. Food and Bioprocess Technology, 12(6), 964–975. https://doi.org/10.1007/s11947-019-02269-z

30. Zhang, X., Sun, X., Gao, F., Wang, J., & Wang, C. (2019). Systematical characterization of physiochemical and rheological properties of thermal-induced polymerized whey protein. Journal of the Science of Food and Agriculture, 99(2), 923–932. https://doi.org/10.1002/jsfa.9264

31. Donskaya G.A. (2021). Innovacionnye tekhnologii obrabotki moloka. Innovative technologies of dairy processing. Pishchevaya Promyshlennost' Food industry, (7), 55–58. https://doi.org/10.52653/PPI.2021.7.7.017

32. Zhizhin, N. A. (2022). VEZHKH analiz furozina, β-laktoglobulina i laktulozy kak kriterij ocenki teplovoj nagruzki na moloko HPLC analysis of furosin, β-lactoglobulin and lactulose as a criterion for assessing the heat load on milk. Zootekhniya Zootechniya, (3), 32–36. https://doi.org/10.25708/ZT.2022.16.19.010

33. Zabodalova, L. A., Belozerova, M. S. (2016). Inzhenernaya reologiya: Ucheb.-metod. Posobie Engineering rheology: Educational and methodical manual. Sankt-Peterburg: Universitet ITMO.

34. Myalenko, D. M. & Golowan, N. S. (2020). Vliyanie ul'trafioletovogo izlucheniya na sanitarno-gigienicheskie pokazateli polietilenovoj plenki, napolnennoj neorganicheskimi komponentami, dlya molochnoj produkcii The influence of ultraviolet radiation on sanitary and hygiene indicators of polyethylene film for dairy products filled with inorganic components. Vestnik Krasnoyarskogo Gosudarstvennogo Agrarnogo Universiteta Bulletin of KrasGAU, (11(164)), 205–212. https://doi.org/10.36718/1819-4036-2020-11-205-212

35. Ryazanceva K.A., Sherstneva N.E., Agarkova E.YU. (2022). Ispol'zovanie ul'trafioletovoj obrabotki dlya uluchsheniya konsistencii fermentirovannyh syvorotochnyh napitkov Using ultraviolet treatment to improve the consistency of fermented whey drinks. Molochnaya Promyshlennost' Dairy industry, (4), 42–45. https://doi.org/10.31515/1019-8946-2022-04-42-45

36. Fedotova O.B. (2021). Rol' upakovki v hranenii molochnoj produkcii uvelichennyh srokov godnosti The role of packaging in determining the expiration date of dairy products with extended shelf life. Molochnaya Promyshlennost' Dairy industry, (9), 6–8. https://doi.org/10.31515/1019-8946-2021-09-6-8

37. Fedotova, O. B., Myalenko, D. M. (2020). Issledovanie fiziko-mekhanicheskih pokazatelej napolnennoj pishchevoj sazhej polietilenovoj plenki dlya molochnoj i pishchevoj produkcii posle vozdejstviya na nee impul'snym ul'trafioletovym izlucheniem The research of physical and mechanical indicators of filled food soot of polyethylene film for dairy and food products after exposing to its pulse uv radiation. Vestnik Krasnoyarskogo Gosudarstvennogo Agrarnogo Universiteta Bulletin of KrasGAU, (7(160)), 166–172. https://doi.org/10.36718/1819-4036-2020-7-166-172

38. Fedotova O.B., Myalenko D.M. (2021). Bezopasnost' upakovki, formiruemoj v processe proizvodstva molochnoj produkcii Safety of packaging formed during the production of dairy products. Molochnaya Promyshlennost' Dairy industry, (2), 11–13. https://doi.org/10.31515/1019-8946-2021-02-11-13

39. Fedotova, O. B., Pryanichnikova, N. S. (2021). Issledovanie izmeneniya struktury polietilenovogo sloya upakovki, kontaktiruyushchego s pishchevym produktom pri vozdejstvii ul'trafioletovogo izlucheniya Research of the polyethylene packaging layer structure change in contact with a food product at exposure to ultraviolet radiation. Pishchevye Sistemy Food systems, 4(1), 56–61. https://doi.org/10.21323/2618-9771-2021-4-1-56-61

40. YUrova, E. A. (2017). Identifikaciya moloka-syr'ya podtverzhdenie sootvetstviya trebovaniyam TR TS 033/2013 Identification of raw milk. confirmation of the compliance with the requirements of the TP TC 033/2013. Molochnaya Promyshlennost' Dairy industry, 1, 16–18.

41. YUrova, E. A. (2019). Osobennost' kontrolya molochnoj produkcii po pokazatelyam kachestva i bezopasnosti Features of control of dairy products in terms of quality and safety.. Pererabotka Moloka Milk processing, 6–9. https://doi.org/10.33465/2222-5455-2019-4-6-8


Supplementary files

1. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (13KB)    
Indexing metadata ▾
2. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (496KB)    
Indexing metadata ▾
3. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (680KB)    
Indexing metadata ▾
4. рисунки
Subject
Type Исследовательские инструменты
Download (87KB)    
Indexing metadata ▾

Review

For citations:


Riazantseva K.A., Sherstneva N.E., Zhizhin N.A. Improvement of the Structural Properties of a Ferrous Milk Product by Introducing Modified Whey Proteins. Storage and Processing of Farm Products. 2022;(2). (In Russ.) https://doi.org/10.36107/spfp.2022.342

Views: 394


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)