Determination of the Feasibility of Preliminary Decationization of Plant Raw Materials for Enzymatic Fragmentation of the Protopectin Complex
https://doi.org/10.36107/spfp.2023.426
Abstract
Introduction: The use of enzyme preparations for processing plant raw materials imposes some restrictions determined by the structure of enzyme molecules and the properties of the medium. One of the main limiting factors is the possible presence of an inhibitor in the medium that suppresses catalytic activity. Polyvalent metal cations can be a potential inhibitor, therefore, determining the expediency of decationization of the medium before enzymatic treatment is relevant.
Purpose: The aim of the work is to develop an approach to determining the feasibility of preliminary decationization of raw materials before the enzymatic process.
Materials and Methods: Non-granulated dry non-massaged beet pulp was used as a substrate. Enzymatic treatment was carried out with a homoenzyme preparation of rhamnogalacturonan lyase action at a concentration of 0.00, 0.05, 0.1, 0.2, 0.4 and 0.8 % by weight of the dry substrate. The pretreatment of the swollen raw materials was carried out by 0.00, 0.20, 0.50 and 0.91 units of 2.87 % aqueous solution of complexon. The response factor was electrical conductivity. The enzymatic process was carried out at a temperature of 45 °C for 8 hours. By approximating the experimental data for each research variant, a mathematical description of the dynamics of the enzymatic process was obtained.
Results: By the nature of the dependence of the inverse kinetic parameters, it was found that within each concentration of the enzyme preparation, the value of the asymptotic rate of the process Vmax = const, and the Michaelis constant Km continuously increases. For a comprehensive assessment of the studied dynamics, a system of criteria was developed, including the criterion of variability of the Michaelis constant Q (Km), the discrete optimality criterion Z, the complex optimality criterion of decationization F and the evaluation criterion Q, accompanied by 4 postulated optimization conditions.
Conclusions: As a result, the developed system of criteria makes it possible to solve three tasks at once – determining the feasibility of pre-decationization, optimal concentrations of complexon and homoenzyme preparation.
About the Authors
Vladimir V. KondratenkoRussian Federation
Tatyana Yu. Kondratenko
Russian Federation
References
1. Rimareva, L. V., Serba, E. M., Sokolova, E. N., Borshcheva, Yu. A., Ignatova, N. I. (2017). Enzyme preparations and biocatalytic processes in the food industry. Voprosy pitaniia = Problems of Nutrition, 86(5): 62–74. (in Russian). https://doi.org/10.24411/0042-8833-2017-00078
2. Mandake, M. B., Das, U., Phad, L., Busamwar, S. (2020). Application of Enzyme Immobilization in the Food Industry. International Journal of Advanced Research in Chemical Science, 7(2): 6–10. http://dx.doi.org/10.20431/2349-0403.0702002
3. Ochiai, A., Itoh, T., Kawamata, A., Hashimoto, W., Murata, K. (2007). Plant cell wall degradation by saprophytic Bacillus subtilis strains: gene clusters responsible for rhamnogalacturonan depolymerization. Applied and Environmental Microbiology, 73(12): 3803–3813. https://doi.org/10.1128/aem.00147-07
4. Silva, I. R., Larsen, D. M., Meyer, A. S., Mikkelsen, J. D. (2011). Identification, expression, and characterization of a novel bacterial RGI lyase enzyme for the production of bio-functional fibers. Enzyme and Microbial Technology, 49(2): 160–166. https://doi.org/10.1016/j.enzmictec.2011.04.015
5. Dhillon, A., Fernandes, V. O., Dias, F. M. V., Prates, J. A. M., Ferreira, L. M. A., Fontes, C. M. G. A., Centeno, M. S., Goyal, A. (2016). A New Member of Family 11 Polysaccharide Lyase, Rhamnogalacturonan Lyase (CtRGLf) from Clostridium thermocellum. Molecular Biotechnology, 58: 232–240. https://doi.org/10.1007/s12033-016-9921-6
6. Yuan, Y., Zhang, X.-Y., Zhao, Y., Zhang, H., Zhou, Y.-F., Gao, J. (2019). A Novel PL9 Pectate Lyase from Paenibacillus polymyxa KF-1: Cloning, Expression, and Its Application in Pectin Degradation. International Journal of Molecular Sciences, 20(12): 3060. https://doi.org/10.3390/ijms20123060
7. Wang, W., Wang, Y., Yi, H., Liu, Y., Zhang, G., Zhang, L., Mayo, K.H., Yuan, Y., Zhou, Y. (2022). Biochemical Characterization of Two Rhamnogalacturonan Lyases from Bacteroides ovatus ATCC 8483 with Preference for RG-I Substrates. Frontiers in Microbiology, 12: 799875. https://doi.org/10.3389/fmicb.2021.799875
8. Jensen, M. H., Otten, H., Christensen, U., Borchert, T. V., Christensen, L. L. H., Larsen, S., Leggi, L. L. (2010). Structural and Biochemical Studies Elucidate the Mechanism of Rhamnogalacturonan Lyase from Aspergillus aculeatus. Journal of Molecular Biology, 404(1): 100–111. https://doi.org/10.1016/j.jmb.2010.09.013
9. Laatu, M, Condemine, G. (2003). Rhamnogalacturonate lyase RhiE is secreted by the out system in Erwinia chrysanthemi. Journal of Bacteriology, 185(5): 1642–1649. https://doi.org/10.1128/JB.185.5.1642-1649.2003
10. Iwai, M., Yamada, H., Ikemoto, T., Matsumoto, S., Fujiwara, D., Takenaka, S., Sakamoto, T. (2015). Biochemical Characterization and Overexpression of an Endo-rhamnogalacturonan Lyase from Penicillium chrysogenum. Molecular Biotechnology, 57(6): 539–548. https://doi.org/10.1007/s12033-015-9847-4
11. Morales-Quintana, L., Ramos, P., Méndez-Yáñez, A. (2022). Rhamnogalacturonan Endolyase Family 4 Enzymes: An Update on Their Importance in the Fruit Ripening Process. Horticulturae, 8: 465. https://doi.org/10.3390/horticulturae8050465
12. Fujimoto, Z., Jackson, A., Michikawa, M., Maehara, T., Momma, M., Henrissat, B., Gilbert, H. J., Kaneko, S. (2013). The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. The Journal of Biological Chemistry, 288(17): 12376–12385. https://doi.org/10.1074/jbc.M113.460097
13. O'Neill, E. C., Stevenson, C. E., Paterson, M. J., Rejzek, M., Chauvin, A. L., Lawson, D. M., Field, R. A. (2015). Crystal structure of a novel two domain GH78 family α-rhamnosidase from Klebsiella oxytoca with rhamnose bound. Protein, 83(9): 1742–1749. https://doi.org/10.1002/prot.24807
14. Furusawa, G., Azami, N. A., The, A.-H. (2021). Genes for degradation and utilization of uronic acid-containing polysaccharides of a marine bacterium Catenovulum sp. CCB-QB4. PeerJ, 9: 10929. http://doi.org/10.7717/peerj.10929
15. Robin, T., Reuveni, S., Urbakh, M. (2018). Single-molecule theory of enzymatic inhibition. Nature Communications, 9: 779. https://doi.org/10.1038/s41467-018-02995-6
16. Ivanova, Yu. V. (2022). Enzymes seen by restorers eyes or the ingenious gentleman don Quixote of la Mancha. Art Heritage. Research. Storage. Conservation, 4: 7–20. (in Russian).
17. Patadiya, N., Panchal, N., Vaghela, V. (2021). A Review on Enzyme Inhibitors. International Research Journal of Pharmacy, 12(6): 60–66. http://dx.doi.org/10.7897/2230-8407.1206145
18. Zhang, Y., Ren, H., Wang, Y., Chen, K., Fang, B., Wang, Sh. (2016). Bioinspired Immobilization of Glycerol Dehydrogenase by Metal Ion-Chelated Polyethyleneimines as Artificial Polypeptides. Scientific Reports, 6: 24163. https://doi.org/10.1038/srep24163
19. Joslyn, M. A. (1963). The Chemistry of Protopectin: A Critical Review of Historical Data and Recent Developments. Advances in Food Research, 11: 1–107. https://doi.org/10.1016/S0065-2628(08)60064-6
20. Kondratenko, V. V., Petrov, A. N., Kondratenko T. Yu. (2022). Basic notions for kinetics of enzymatic processes and approaches to its determination. Vsyo o myase, 6: 12–19. (in Russian). https://doi.org/10.21323/2071-2499-2022-6-12-19
21. Kondratenko, V. V., Tsaryova, M. A., Kondratenko, T. Yu., Davydova, A. Yu., Alabina, N. M. (2018). O dekationizatsii pektinosoderzhashchego syrʹya na primere sveklovichnogo zhoma [Decation of pectin-containing raw materials using beet pulp as an example]. Nauchnye trudy Severo-Kavkazskogo Federalʹnogo nauchnogo tsentra sadovodstva, vinogradarstva i vinodeliya [Scientific Proceedings of the North Caucasus Federal Scientific Center for Horticulture, Viticulture and Winemaking], 21: 42–48. (in Russian).
22. Seltman, Y.J. (2018). Experimental Design and Analysis. Pittsburgh: Carnegie Mellon University 414 p. https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf.
23. Kondratenko, V. V., Petrov, A. N., Kondratenko, T. Yu. (2022). Razrabotka metodov opredeleniya optimalʹnoy kontsentratsii fermentov na osnovanii analiza dinamiki fermentirovaniya [Development the methods for determining the optimal concentration of enzymes based on analysis of fermentation dynamics]. Pishchevaya promyshlennostʹ [Food Industry], 11: 67–74. (in Russian). https://doi.org/10.52653/PPI.2022.11.11.016
Supplementary files
|
1. Рисунок 1. Механизм ингибирования ферментативного процесса | |
Subject | ||
Type | Исследовательские инструменты | |
View
(373KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2. Влияние концентрации катионов металлов на активность ферментов | |
Subject | ||
Type | Исследовательские инструменты | |
View
(161KB)
|
Indexing metadata ▾ |
![]() |
3. Рисунок 3. Влияние концентрации субстрата (в обратных координатах) на темп ферментативного процесса при разной концентрации ферментного препарата при разной в зависимости от степени предварительной декатионизации | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(2MB)
|
Indexing metadata ▾ |
![]() |
4. Рисунки 5-8 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(58KB)
|
Indexing metadata ▾ |
![]() |
5. Рисунок 4. Влияние концентрации ферментного препарата на динамику Vmax в зависимости от степени предварительной декатионизации | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(49KB)
|
Indexing metadata ▾ |
![]() |
6. Протокол вкладов авторов | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(13KB)
|
Indexing metadata ▾ |
Review
For citations:
Kondratenko V.V., Kondratenko T.Yu. Determination of the Feasibility of Preliminary Decationization of Plant Raw Materials for Enzymatic Fragmentation of the Protopectin Complex. Storage and Processing of Farm Products. 2023;(2):118-131. (In Russ.) https://doi.org/10.36107/spfp.2023.426