Preview

Storage and Processing of Farm Products

Advanced search

Comparative Analysis of Milk Souring by Reflective Infrared Spectroscopy

https://doi.org/10.36107/spfp.2024.3.554

Abstract

Introduction: To improve the efficiency and competitiveness of the dairy industry, it is important to control the quality of dairy products. Infrared spectroscopy demonstrates significant potential for its application in composition measurement, detection of falsifications, and control in technological processes. At the same time, there is no information on the use of IR methods for the analysis of milk souring during storage and processing.

Purpose: The study of optical properties in the infrared spectrum of milk during souring to justify the choice of the spectral range and the most informative control parameters during storage and processing.

Materials and Methods: For measurements, drinking pasteurized milk with a mass fraction of 4.01% fat, 3.37% protein, and 4.94% lactose was taken. The spectral characteristics of reflection and absorption α(λ) were measured in the ranges of 400-2500 nm and 2.5-18.0 microns according to a generally accepted method.

Results: In the near-infrared region, there are absorption maxima at wavelengths of approximately 980 nm, 1200 nm, 1455 nm, and 1930 nm. The integral absorption coefficients calculated both in the entire spectrum and in the maximum regions vary slightly (less than 10%) and non-systematically with an increase in acidity by 6 times during the souring process. Statistical parameters also change slightly and non-systematically. All spectral curves have pronounced left-sided asymmetry and moderate flatness. In the medium-wave absorption spectrum, there is a single maximum at about 9400 nm in the 8000-12500 nm region. The dependence of the absorption coefficient on acidity in the range of 8000-12500 nm is increasing and can be statistically reliably approximated. Statistical parameters do not change systematically with changes in acidity in the mid-IR range. All spectra have right-sided asymmetry and pronounced flatness.

Conclusion: It is most advisable to control the acidity of milk during storage and processing during souring by absorption in the middle IR range, and the most informative spectral region is 8-12.5 microns. The statistical parameters of the absorption spectra of milk in both the near and middle infrared ranges vary non-systematically and, often, insignificantly. All spectra are flat–topped, in the near-IR range they have left-sided, and in the middle IR region they have right-sided asymmetry.

About the Author

Mikhail V. Belyakov
ФГБНУ ФНАЦ ВИМ
Russian Federation


References

1. Beljakov, M. V., & Nikitin E.A. (2023). Spektral'nye ljuminescentnye harakteristiki moloka i molochnyh produktov [Spectral luminescent characteristics of milk and dairy products]. Hranenie i pererabotka sel'hozsyr'ja [Storage and processing of agricultural raw materials], 2, 90-102. https://doi.org/10.36107/spfp.2023.412

2. Beljakov, M. V., Samarin, G. N., Efremenkov, I. Ju., & Kudrjavcev, A. S. (2023). Ljuminescentnye svojstva moloka razlichnoj zhirnosti pri skisanii [Luminescent properties of milk of various fat content during souring]. Jelektrotehnologii i jelektrooborudovanie v APK [Electrical technologies and electrical equipment in agriculture], 70(1), 37-44. https://doi.org/10.22314/2658-4859-2023-70-1-37-44

3. Ivanov, Ju. A. (2022). Strategicheskie napravlenija razvitija molochnogo skotovodstva [Strategic directions for the development of dairy cattle breeding]. Tehnika i tehnologii v zhivotnovodstve [Machinery and Technologies in animal husbandry], 2(46), 18-23. https://doi.org/10.51794/27132064-2022-2-18

4. Kulmyrzaev, A. A., & Machihin, S. A. (2007). Primenenie fluorescentnoj spektroskopii dlja ocenki kachestva termicheski obrabotannogo moloka [The use of fluorescence spectroscopy to assess the quality of heat-treated milk]. Hranenie i pererabotka sel'hozsyr'ja [Storage and processing of agricultural raw materials], 12, 69-72.

5. Lukashenko, E. I. (2014). Primenenie fluorescentnogo metoda dlja kontrolja kachestva [The use of the fluorescent method for quality control]. Molochnohozjajstvennyj vestnik [Dairy Bulletin], 1(13), 65-70.

6. Mel'denberg, D. N., Poljakova, O. S., Semenova, E. S., & Jurova, E. A. (2020). Razrabotka kompleksnoj ocenki belkovogo sostava moloka syr'ja razlichnyh sel'skohozjajstvennyh zhivotnyh dlja vyrabotki produktov funkcional'noj napravlennosti [Development of a comprehensive assessment of the protein composition of milk of raw materials of various farm animals for the production of functional products]. Hranenie i pererabotka sel'hozsyr'ja [Storage and processing of agricultural raw materials], 3, 118-133. https://doi.org/10.36107/spfp.2020.352

7. Samarin, G.N., Beljakov, M.V., Efremenkov, I.Ju., & Ljashhuk, Ju.O. (2024). Obnaruzhenie antibiotikov v moloke po ego fotoljuminescentnym svojstvam [Detection of antibiotics in milk by its photoluminescent properties]. Jelektrotehnologii i jelektrooborudovanie v APK [Electrical technologies and electrical equipment in agriculture], 71(1), 10-16. https://doi.org/10.22314/2658-4859-2024-71-1-10-16.

8. Svjatkina, L. I., & Andruhova, V. Ja. (2009). Ocenka podlinnosti produkcii iz korov'ego moloka metodom gazovoj hromatografii [Assessment of the authenticity of cow's milk products by gas chromatography]. Hranenie i pererabotka sel'hozsyr'ja [Storage and processing of agricultural raw materials], 10, 20-23.

9. Topnikova, E. V., Novokshanova, A. L., Pirogova E. N., & Ryzhakina, T. P. (2023). Ocenka gigienicheskih i mikrobiologicheskih riskov pri pererabotke moloka v Rossii [Assessment of hygienic and microbiological risks in milk processing in Russia]. Molochnohozjajstvennyj vestnik [Dairy Bulletin], 1(49), 193-214. https://doi.org/10.52231/2225-4269_2023_1_193

10. Hamnaeva, N. I., Batueva, D. M., & Danzheeva, Je. K. (2009). Sravnitel'naja ocenka impul'snoj jelektronno-puchkovoj i termicheskoj obrabotok moloka i molochnoj syvorotki s pomoshh'ju IK-spektroskopii [Comparative evaluation of pulsed electron beam and thermal treatment of milk and whey using IR spectroscopy]. Hranenie i pererabotka sel'hozsyr'ja [Storage and processing of agricultural raw materials], 6, 21-23.

11. Hurshudjan, S. A., Lazareva, E. G., Rjabova, A. E., & Mihajlova, I. Ju. (2020). Analiticheskie izmerenija v jekspertize pishhevyh produktov [Analytical measurements in the examination of food products]. Kontrol' kachestva produkcii [Product quality Control], 6, 38-41. https://doi.org/10.35400/2541-9900-2020-6-38-41

12. Andrade, J., Pereira, C. G., de Almeida Junior, J. C., Ramos Viana, C. C., de Oliveira Neves, L. N., Fonseca da Silva, P. H., Bell, M. J. V., & de Carvalho dos Anjos, V. (2019). FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT, 99, 166-172. https://doi.org/10.1016/j.lwt.2018.09.079

13. Buzdar, M., Yaqub, A., Hayat, A., Zia Ul Haq, M., Khan, A., & Ajab, H. (2023). Paper based colorimetric sensor using novel green magnetized nanocomposite of pinus for hydrogen peroxide detection in water and milk. Food Bioscience, 55, 103014. https://doi.org/10.1016/j.fbio.2023.103014

14. Currò, S., Manuelian, C.L., Penasa, M., Cassandro, M., De Marchi, M. (2017). Technical note: Feasibility of near infrared transmittance spectroscopy to predict cheese ripeness. Journal of Dairy Science, 100(11), 8759-8763. https://doi.org/10.3168/jds.2017-13001

15. Daniloski, D., McCarthy, N. A., O'Callaghan, T. F., & Vasiljevic, T. (2022). Authentication of β-casein milk phenotypes using FTIR spectroscopy. International Dairy Journal, 129, 105350. https://doi.org/10.1016/j.idairyj.2022.105350

16. Grewal, M. K., Huppertz, T., & Vasiljevic, T. (2018). FTIR fingerprinting of structural changes of milk proteins induced by heat treatment, deamidation and dephosphorylation. Food Hydrocolloids, 80, 160-167. https://doi.org/10.1016/j.foodhyd.2018.02.010

17. Holroyd, S. E. (2013). The Use of near Infrared Spectroscopy on Milk and Milk Products. Journal of Near Infrared Spectroscopy, 21(5), 311-322. doi:10.1255/jnirs.1055

18. Manley, M. (2014). Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chemical Society Reviews, 43, 8200-8214. https://doi.org/10.1039/C4CS00062E

19. Markoska, T., Huppertz, T., Grewal, M. K., & Vasiljevic, T. (2019). FTIR analysis of physiochemical changes in raw skim milk upon concentration. LWT, 102, 64-70, https://doi.org/10.1016/j.lwt.2018.12.011

20. Portnoy, M., Coon, C., & Barbano, D.M. (2021). Infrared milk analyzers: Milk urea nitrogen calibration. Journal of Dairy Science, 104(7), 7426-7437. https://doi.org/10.3168/jds.2020-18772

21. Pu, Y.-Y., O'Donnell, C., Tobin, J. T., & O'Shea, N. (2020). Review of near-infrared spectroscopy as a process analytical technology for real-time product monitoring in dairy processing. International Dairy Journal, 103, 104623. https://doi.org/10.1016/j.idairyj.2019.104623

22. Temizkan, R., Can, A., Dogan, M. A., Mortas, M., & Ayvaz, H. (2020). Rapid detection of milk fat adulteration in yoghurts using near and mid-infrared spectroscopy. International Dairy Journal, 110, 104795. https://doi.org/10.1016/j.idairyj.2020.104795

23. Toffanin, V., De Marchi, M., Lopez-Villalobos, N., & Cassandro, M. (2015). Effectiveness of mid-infrared spectroscopy for prediction of the contents of calcium and phosphorus, and titratable acidity of milk and their relationship with milk quality and coagulation properties. International Dairy Journal, 41, 68-73. https://doi.org/10.1016/j.idairyj.2014.10.002

24. Visconti, L. G., Rodríguez, M. S., & Di Anibal, C. V. (2020). Determination of grated hard cheeses adulteration by near infrared spectroscopy (NIR) and multivariate analysis. International Dairy Journal, 104, 104647. https://doi.org/10.1016/j.idairyj.2020.104647

25. Wang, Y., Guo, W., Zhu, X. & Liu, Q. (2019). Effect of homogenisation on detection of milk protein content based on NIR diffuse reflectance spectroscopy. International Journal of Food Sciences and Technology, 54, 387-395. https://doi.org/10.1111/ijfs.13948


Supplementary files

1. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (24KB)    
Indexing metadata ▾
2. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (26KB)    
Indexing metadata ▾
3. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (135KB)    
Indexing metadata ▾

Review

For citations:


Belyakov M.V. Comparative Analysis of Milk Souring by Reflective Infrared Spectroscopy. Storage and Processing of Farm Products. 2024;32(3):82-91. (In Russ.) https://doi.org/10.36107/spfp.2024.3.554

Views: 180


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)