Evaluation of a Yogurt Product Produced Using Secondary Dairy Raw Materials — Butter Milk
https://doi.org/10.36107/spfp.2023.375
Abstract
Introduction. The physiological norms of nutrition and the intake of food enriched with various essential substances are the subject of study by many specialists, including technologists. Therefore, it is important to study the properties of products using functional groups of substances. Secondary raw materials are a source of biologically and physiologically important substances that can be used in the fortification of food, including yogurt products, in order to reduce the deficiency of essential substances that can lead to a violation of nutritional status, and also have a positive economic effect from the point of view of resource-saving production technology.
Purpose. Study of the technology of production of a product based on secondary dairy raw materials — buttermilk and determination of its quality indicators.
Materials and Methods. The research was conducted at the Department of Technology of Storage and Processing of Animal Products of the Russian State Agricultural Academy named after K.A. Timiryazev together with the All-Russian Research Institute of Dairy Industry. Raw materials for the production of yogurt and yogurt product were supplied from the zoo station of the RGAU — MSHA named after K.A. Timiryazev. Studies of raw materials and dairy products were carried out according to generally accepted methods.
Results. Physicochemical and rheological parameters were studied in the developed products. Based on the data obtained, it was found that the yoguric product, with the use of secondary raw materials of buttermilk, has a lower calorie content compared to the classic yogurt made from milk. Also, the high content of B vitamins in buttermilk makes it possible to obtain a product with pronounced biologically active properties. It was found that the microflora characteristic of traditional yogurt was present in the studied samples of the yogurt product, these are Str.thermophillus and Lbm.bulgaricus. Cell viability is high, at the end of the shelf life and it averaged 5,04 · 107 CFU/cm3, which is confirmed by the indicator of acid formation in products — more than 100 ° T.
Conclusions. The developed technology of yogurt product production is not only resourcesaving, but also belongs to the field of careful production. The resulting product can be recommended as a dietary supplement, as a source of biologically active substances.
About the Authors
Olga N. KrasulyaRussian Federation
Ksenia A. Kanina
Russian Federation
Nikolay A. Zhizhin
Russian Federation
References
1. Вышемирский, Ф. А. (2011). Пахта: Минимум калорий – максимум биологической ценности. Молочная промышленность, (8), 54-56.
2. Евдокимов, И. А. (2010). Реальные мембранные технологии. Молочная промышленность, (2), 49-50.
3. Зайцева, Л. В. (2010). Роль различных жирных кислот в питании человека при производстве пищевых продуктов. Пищевая промышленность, (12), 60-63.
4. Камарова, О. Н., & Хавкин, А. И. (2017). Кисломолочные продукты в питании детей: пищевая и биологическая ценность. Российский вестник перинатологии и педиатрии, 62(5), 80-85. https://doi.org/10.21508/1027–4065–2017–62–5–80–86
5. Канина, К. А., & Робкова, Т. О. (2015). Выявление качественного и востребованного йогурта на молочном рынке. В Интенсивные технологии производства продукции животноводства: Сборник статей Международной научно-практической конференции (с. 112-114). Пенза: Межотраслевой научно-информационный центр Пензенской государственной сельскохозяйственной академии.
6. Макаренко, В. В. (2018). Вторичное молочное сырьё – одно из перспективных направлений развития молочной промышленности на инновационной основе. Международный технико-экономический журнал, (5), 17-20.
7. Макарова, С. Г., & Намазова-Баранова Л. С. (2015). Кишечная микробиота и использование пробиотиков в практике педиатра. Что нового? Педиатрическая фармакология, 12 (1), 38-45. https://doi.org/10.15690/pf.v12i1.1245
8. Огнева, О. А., & Чеснокова, А. А., Гладкая, О. О. (2018). Использование молочной сыворотки и пахты в производстве функциональных напитков. В Современные аспекты производства и переработки сельскохозяйственной продукции: Сборник статей по материалам IV научно-практической конференции студентов, аспирантов и молодых ученых (с. 16-22). Краснодар: Кубанский государственный аграрный университет имени И. Т. Трубилина.
9. Храмцов, А. Г. (2018). Логистика формирования нового технологического уклада молочной отрасли пищевой индустрии АПК в условиях ограниченных ресурсов традиционного сырья. Индустрия питания, (3), 8-22. https://doi.org/10.29141/2500-1922-2018-3-4-1
10. Чекалева, А. В., & Острецова, Н. Г. (2012). Использование концентратов пахты, полученных обратным осмосом и нанофильтрацией, производстве йогурта. Молочнохозяйственный вестник, (3), 77-83.
11. Chassaigne, H., & Lobinski, R. (1998). Direct species-selective determination of cobalamins by ionspray mass spectrometry and ionspray tandem mass spectrometry. Analyst, Royal Society of Chemistry, 123(1), 131-137. https://doi.org/10.1039/a704698g
12. Daubert, C. R., Hudson, H. M., Foegeding, A. E., & Prabhasankar, P. (2006). Rheological characterization and electrokinetic phenomena of charged whey protein dispersions of defined size. LWT - Food Science and Technology, 39(3), 206-215.
13. El-Loly, M. M. (2011). Composition, properties and nutritional aspects of milk fat globule membrane - A review. Polish Journal of Food and Nutrition Sciences, 61(1), 7-32. https://doi.org/10.2478/v10222-011-0001-0
14. Negussie Gebreselassie, N., Abrahamsen, R. K., Beyene, F., Abay, F., Narvhus, J. A. (2016). Chemical composition of naturally fermented buttermilk. International Journal of Dairy Technology, 69(2), 200-208. https://doi.org/10.1111/1471-0307.12236
15. Kumar, S. S., Chouhan, R. S., & Thakur, M. S. (2010). Trends in analysis of vitamin B12. Analytical Biochemistry, 398(2), 139-149. https://doi.org/10.1016/j.ab.2009.06.041
16. Morelli, B. (1995). Determination of a quaternary mixture of vitamins B6, B1, and B12 and uridine 5’-triphosphate by derivative spectrophotometry. Journal of Pharmaceutical Sciences, 84(1), 34-37. https://doi.org 10.1002/jps.2600840109
17. Turcot, S., Turgeon, S. L., & St-Gelais, D. (2001). Effet de la concentration en phospholipides de babeurre dans le lait de fromagerie sur la production et la composition de fromages allégés de type Cheddar. Lait, 81(3), 429-442. https://doi.org/10.1051/LAIT:2001142
18. Vasbinder, A. J., & de Kruif, C. G. (2003). Casein–whey interactions in heated milk: The influence of pH. International Dairy Journal, 13(8), 669-677. https://doi.org/10.1016/S0958-6946(03)00120-1
19. Ye, A., Singh, H., Oldfield, D. J., & Anema, S., (2004). Kinetics of heat-induced association of b-lactoglobulin and a-lactalbumin with milk fat globule membrane in whole milk. International Dairy Journal, 14(5), 389-398. https://doi.org/10.1016/j.idairyj.2003.09.004
20. Zisu, B., Bhaskaracharya, R., Kentish, S., & Ashokkumar, M. (2009). Ultrasonic processing of dairy systems in large scale reactors. Ultrasonic Sonochemistry, 17(6), 1075-1081. https://doi.org/10.1016/j.ultsonch.2009.10.014
Supplementary files
![]() |
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(1MB)
|
Indexing metadata ▾ |
Review
For citations:
Krasulya O.N., Kanina K.A., Zhizhin N.A. Evaluation of a Yogurt Product Produced Using Secondary Dairy Raw Materials — Butter Milk. Storage and Processing of Farm Products. 2023;(1):57-68. (In Russ.) https://doi.org/10.36107/spfp.2023.375