Ultrasonic Cavitation and Its Potential Impact on Microflora: A Systematic Scoping Review
https://doi.org/10.36107/spfp.2023.4.463
Abstract
Introduction: Ultrasonic processing generates cavitation effects, leading to mechanical and sonochemical impacts. Collectively, these factors can contribute to the manifestation of an antimicrobial effect. However, to date, there is no comprehensive understanding of the extent to which ultrasonic radiation parameters influence different types, groups, and forms of microorganisms, enabling adequate prediction of ultrasonic antimicrobial processing regimes.
Purpose: To systematize knowledge about the peculiarities of the influence of ultrasonic cavitation processing parameters, including accompanying technological factors, on microflora and the biofilms they form.
Materials and Methods: Data analysis on the reaction of microorganisms to ultrasonic radiation was based on scientific articles, dissertations, monographs available in open access, or through legal scientific communication platforms. Searches were conducted in databases such as ScienceDirect, PubMed, Mendeley, Google Scholar, ResearchGate, and РИНЦ. The criteria for selecting sources included research works related to the use of ultrasound in processing microorganism cultures identified taxonomically, presented as spore suspensions or vegetative cells, as well as biofilms. The search covered the period from 1993 to 2023. Non-peer-reviewed, less informative, and off-topic sources were excluded. When necessary for contextual analysis, references to works older than 30 years were used, constituting no more than 5.45% of the total. Figures and tables were adapted for presentation in this article. Numerical data from analyzed sources were processed using Microsoft Excel 2010 (Microsoft Co.) and TableCurve 2D v.5.01 to detect the presence or absence of synergistic effects.
Results: Views on the potential mechanisms and factors of ultrasonic processing's influence on microorganisms were systematized. The influence of cell envelope structure and composition on the resistance of gram-positive and susceptibility of gram-negative microorganisms was shown. The manifestation of the antimicrobial effect can be enhanced by combining the acoustic cavitation process with pressure and thermal impact. Such combinations allow for a significant increase in effect while maintaining mild processing conditions. The effectiveness of ultrasonic treatment is likely related to the occurrence of acoustic cavitation not only in the medium but also within the intracellular space. The antimicrobial effect is observed for both vegetative and spore forms of microorganisms. The impact of ultrasonic treatment on biofilms is determined by the combination of intensity and frequency of radiation.
Conclusions: In this study, existing knowledge on the antimicrobial effects of ultrasonic treatment has been systematized, considering the treatment modes, cell wall structure, and accompanying factors. The collapsing cavitation effect plays a crucial role. The variety of results underscores the need for further research, focusing on the intensity and saturation of cavitation. These findings could stimulate the development of energy-efficient and gentle technologies to enhance the microbiological safety of food products.
About the Authors
Kondratenko Yurievna KondratenkoRussian Federation
Vladimir Vladimirovich Kondratenko
Russian Federation
Madina Nasrudinovna Kurbanova
Russian Federation
Lyubov Karpovna Patsyuk
Russian Federation
References
1. Oboturova, N.P., Sudakova, N.V., Kokoeva, V.S., & Zaitsev A.S. (2013). The use of plant extracts in the production of food products. Food industry, 6, 48-50. https://cyberleninka.ru/article/n/primenenie-ekstraktov-rastitelnogo-syrya-pri-proizvodstve-pischevyh-produktov (Date of Access: 05.05.2023).
2. Kuzmichev, A.V. (2016). Applications of Ultrasonics for Liquid Food Processing. VIESH Bulletin, 3(24), 38-47. (In Russ.).
3. Fedosenko, T.V., Kondratenko, T.Yu., & Kondratenko V.V. (2022). Features of using ultrasonic cavitation for liquid-like media processing. Vsyo o myase, 5, 38-45. https://doi.org/10.21323/2071-2499-2022-5-38-45 (In Russ.).
4. Paniwnyk, L. (2016). Applications of ultrasound in processing of liquid foods: A review. Ultrasonics Sonochemistry, 38, 794-806. https://dx.doi.org/10.1016/j.ultsonch.2016.12.025
5. Carrillo-Lopez, L.M., Alarcon-Rojo, A.D., Luna-Rodriguez, L., & Reyes-Villagrana R. (2017). Modification of Food Systems by Ultrasound. Journal of Food Quality, Article ID 5794931. https://doi.org/10.1155/2017/5794931
6. Leong, Th., Ashokkumar, M., & Kentish, S. (2011). The fundamentals of power ultrasound – A review. Acoustics Australia, 39(2), 54-63. https://acoustics.asn.au/journal/Vol39No2.pdf.
7. Antusheva, T.I. (2013). Some features of the effect of ultrasound on microorganisms. Live and bio-abiotic systems, 4, 11. https://jbks.ru/archive/issue-4/article-11 (Date of access: 05.03.2023). (In Russ.).
8. Gerasimov D.V, & Suchkova E.P. (2014). Theoretical basis of the use of ultrasound for food processing systems to regulate the content of biologically active components. Scientific Journal of NRU ITMO. Series: Processes and apparatuses of food production, 3, 53-60. http://processes.ihbt.ifmo.ru/ru/article/10421/article_10421.htm (Date of access: 05.03.2023). (In Russ.).
9. Ansari, J.A., Ismail, M., & Farid, M. (2017). Investigation of the use of ultrasonication followed by heat for spore inactivation. Food and Bioproducts Processing, 104, 32-39. https://doi.org/10.1016/j.fbp.2017.04.005
10. Lv, R., Zou, M., Chantapakul, T., Chen, W., Muhammad, A.I., Zhou, J., Ding, T., Ye, X., & Liu, D. (2019). Effect of Ultrasonication and Thermal and Pressure Treatments, Individually and Combined, on Inactivation of Bacillus cereus Spores. Applied Microbiology and Biotechnology, 103(5), 2329-2338. https://doi.org/10.1007/s00253-018-9559-3
11. Liao, H. (2022). Response of Food-Borne Pathogens to Ultrasound. In: Ding, T., Liao, X., Feng, J. (eds) Stress Responses of Foodborne Pathogens. Cham: Springer, 179-219. https://doi.org/10.1007/978-3-030-90578-1_7
12. Nakonechny, F., & Nisnevith, M. (2021). Different acpects of using ultrasound to combat microorganisms. Advanced Functional Materials, 2011042. https://doi.org/10.1002/adfm.202011042
13. Harvey, E., & Loomis, A. (1928). High Frequency Sound Waves of Small Intensity and their Biological Effects. Nature, 121, 622-624. https://doi.org/10.1038/121622a0
14. Wood, R.W., & Loomis, A.L. (1927). XXXVIII The physical and biological effects of high-frequency sound-waves of great intensity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 7, 4(22), 417-436. https://doi.org/10.1080/14786440908564348
15. Harvey, E., & Loomis, A. (1929). The destruction of luminous bacteria by high frequency sound waves. Journal of Bacteriology, 17(5), 373-376. https://doi.org/ 10.1128/jb.17.5.373-376.1929
16. Carstensen, E.L. (1986). Biological effects of acoustic cavitation. Ultrasound in Medicine & Biology, 12(9), 703-704. https://doi.org/10.1016/0301-5629(86)90287-5
17. Cameron, M., McMaster, L.D., & Britz, T.J. (2008). Electron microscopic analysis of dairy microbes inactivated by ultrasound. Ultrasonics Sonochemistry, 15(6), 960-964. https://doi.org/10.1016/j.ultsonch.2008.02.012
18. Knorr, D., Zenker, M., Heinz, V., & Lee D.-U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15(5). 261-266. https://doi.org/10.1016/j.tifs.2003.12.001
19. Tiwari, B.K., O’Donnell, C.P., Patras, A., & Cullen, P.J. (2008). Anthocyanin and ascorbic acid degradation in sonicated strawberry juice. Journal of Agriculture and Food Chemistry, 56, 10071-10077. https://doi.org/10.1021/jf801824v
20. Dubrovi, I., Herceg, Z., Jambrak, A.R., Badanjak, M., & Dragovi-Uzelac, V. (2011). Effect of Ultrasound and Pasteurization on Anthocyanins. Food Technology and Biotechnology, 49(2), 196-204. http://www.ftb.com.hr/images/pdfarticles/2011/April-June/ftb_49_196.pdf
21. Ganesan, B., Martini, S., Solorio, J., & Marie, K.W. (2015). Determining the Effects of High Intensity Ultrasound on the Reduction of Microbes in Milk and Orange Juice. Using Response Surface Methodology. International Journal of Food Science, Article ID 350719. https://doi.org/10.1155/2015/350719
22. Zou, Y., & Jiang, A. (2016). Effect of ultrasound treatment on quality and microbial load of carrot juice. Food Science and Technology, Campinas, 36(1), 111-115. https://doi.org/10.1590/1678-457X.0061
23. Aadil, R.M., Zeng, X.-A., Han, Zh., Sahar, A., Khalil, A.A., Rahman, U.U., Khan, M., & Mehmood T. (2018). Combined effects of pulsed electric field and ultrasound on bioactive compounds and microbial quality of grapefruit juice. Journal of Food Processing and Preservation, 42(2), e13507. https://doi.org/10.1111/jfpp.13507 (2018)
24. Onyeaka, H., Miri, T., Hart, A., Anumudu, C., & Nwabor, O.F. (2021). Application of Ultrasound Technology in Food Processing with emphasis on bacterial spores. Food Reviews International, 1-13. https://doi.org/10.1080/87559129.2021. 2013255
25. Char, C.D., Mitilinaki, E, Guerrero, S.N., & Alzamora, S.M. (2010). Use of high-intensity ultrasound and UV-C light to inactivate some microorganisms in fruit juices. Food and Bioprocess Technology, 3(6), 797-803. https://doi.org/10.1007/s11947-009-0307-7
26. Lee, H., Kim, H., Cadwallader, K.R., Feng, H., Martin, S.E. (2013). Sonication in combination with heat and low pressure as an alternative pasteurization treatment-effect on Escherichia coli k12 inactivation and quality of Apple cider. Ultrasonics Sonochemistry, 20(4): 1131-1138. https://doi.org/10.1016/j.ultsonch.2013.01.003
27. D’amico, D.J., Silk, T.M., Wu, J.R., & Guo, M.R. (2006). Inactivation of microorganisms in milk and apple cider treated with ultrasounds. Journal of Food Protection, 69(3), 556-563. https://doi.org/10.4315/0362-028X-69.3.556
28. Krasulya, O.N., Bogush, V.I., Mukhametdinova, A.K., Kozyreva, S.M., Kuznetsova, T.G., Sergeev, A.I., & Potoroko, I.Y. (2016). Study of changes in meat raw materials in salting using acoustically activated brine. Bulletin of South Ural State University: Series Food Biotechnologies, 4(2), 61-70. doi: https://doi.org/10.14529/food160208 (In Russ.).
29. Averina, Yu.M., Moiseeva, N.A., Shuvalov, D.A., Nyrkov, N.P., & Kurbatov, A.Yu. (2018). Cavitation water treatment. Properties of water and efficiency of treatment. Advances in Chemistry and Chemical Technology, 32(14), 17-19. https://www.muctr.ru/upload/iblock/e26/e26a046e4497aead86c629e43a856781.pdf (Date of access: 05.01.2023). (In Russ.)
30. Promtov, M.A. (2015). Prospects of Cavitation Technologies Application for Intensification of Chemical Technological Processes. Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta, 21(1), 105-111. https://doi.org/10.17277/vestnik.2015.01.pp.105-111. (In Russ.).
31. Scherba, G., Weigel, R.M., & O'Brien Jr., W.D. (1991). Quantitative assessment of the germicidal efficacy of ultrasonic energy. Applied and Environmental Microbiology, 57(7), 2079-2084. https://doi.org/10.1128/aem.57.7.2079-2084.1991
32. Filonenko, E.A., & Khokhlova, V.A. (1999). Modeling the thermal processes occurring in biologi31cal tissues exposed to focused ultrasound. Moscow University Physics Bulletin, 54(6), 36-40. http://vmu.phys.msu.ru/file/1999/6/en-99-54-6-036.pdf (Data of access: 06.05.2023).
33. Potoroko, I.Y., Fatkullin, R.I., & Tsirulnichenko, L.A. (2013). System approach in water treatment technology for food production. Bulletin of South Ural State University, 7(3), 154-159. URL: https://vestnik.susu.ru/em/article/view/1769 (Date of Access: 04.14.2023). (In Russ.)
34. Majid, I., Nayik, G.A., & Nanda, V. (2015). Ultrasonication and Food Technology: A Review. Cogent Food & Agriculture, 1(1), 1071022. https://doi.org/10.1080/23311932.2015.1071022
35. Huang, G., Chen, S., Dai, Ch., Sun, L., Sun, W., Tang, Y., Yiong, F., He, R., & Ma, H. (2017). Effects of ultrasound on microbial growth and enzyme activity. Ultrasonics Sonochemistry, 37, 144-149. https://doi.org/10.1016/j.ultsonch. 2016.12.018
36. Rani, M., Sood, M., Bandral, J.D., Вhat, A., & Gupta, I. (2020). Thermosonication technology and its application in food industry. International Journal of Chemical Studies, 8(3), 922-928. https://doi.org/10.22271/chemi.2020.v8.i3l.9317
37. Li, Y., Li, X., Hao, Y., Liu, Y., Dong, Z., & Li, K. (2021). Biological and Physiochemical Methods of Biofilm Adhesion Resistance Control of Medical-Context Surface. International Journal of Biological Sciences, 17(7), 1769-1781. https://doi.org/10.7150/ijbs.59025
38. Piyasena, P., Mohareb, E., & McKellar, R.C. (2003). Inactivation of microbes using ultrasound: a review. International Journal of Food Microbiology, 87(3), 207-216. https://doi.org/10.1016/S0168-1605(03)00075-8
39. Yusaf, T., & Al-Juboori, R.A. (2014). Alternative methods of microorganism disruption for agricultural applications. Applied Energy, 114, 909-923. https://doi.org/10.1016/j.apenergy.2013.08.085
40. Yusof, N.S.M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J., & Ashokkumar, M. (2016). Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry, 29, 568-576. https://doi.org/10.1016/j.ultsonch.2015.06.013
41. Krasulya, O., Potoroko, I., Kochubey-Litvinenko, O., & Muhametdinova A. (2015). Innovative approaches in dairy technology based on cavitation effects. Bulletin of the South Ural State University: Series Food and Biotechnologies, 3(2), 55-63. https://vestnik.susu.ru/food/article/view/3353 (Data of access: 05.15.2023). (In Russ.)
42. Zupanc, M., Pandur, Ž., Perdih, T.S., Stopar, D., Petkovšek, M., & Dular, M. (2019). Effects of cavitation on different microorganisms. The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrasonics Sonochemistry, 57, 147-165. https://doi.org/10.1016/j.ultsonch.2019.05.009
43. Runyan, C.M., Carmen, J.C., Beckstead, B.L., Nelson, J.L., Robison, R.A., & Pitt, W.G. (2006). Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa. The Journal of General and Applied Microbiology, 52(5). 295-301. https://doi.org/10.2323/jgam.52.295
44. Lattwein, K.R., Shekhar, H., Kouijzer, J.J.P., Van Wamel, W.J.B., Holland, C.K., & Kooiman, K. (2020). Sonobactericide: An Emerging Treatment Strategy for Bacterial Infections. Ultrasound in Medicine & Biology, 46(2). 193-215. https://doi.org/10.1016/j.ultrasmedbio.2019.09.011
45. Promtov, M.A. (2008). Prospects of Cavitation Technologies Application for Intensification of Chemical Technological Processes. Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta, 14(4), 861-869. http://vestnik.tstu.ru/rus/t_14/pdf/14_4_011.pdf (Data of access: 01.05.2023). (In Russ.).
46. He, Q., Liu, D., Ashokkumar, M., Ye, X., Jin, T.Z. & Guo, M. (2021). Antibacterial mechanism of ultrasound against Escherichia coli: Alterations in membrane microstructures and properties. Ultrasonics Sonochemistry, 73, 105509. https://doi.org/10.1016/j.ultsonch.2021.105509
47. Sambegoro, P., Fitriyanti, M., Budiman, B.A., Kamarisima, K., Baliwangi, S.W.A., Alverian, C., Bagherzadeh, S., Narsimhan, G., Aditiawati, P., & Nurprasetio, I.P. (2021). Bacterial cell inactivation using a single-frequency batch-type ultrasound device. Indonesian Journal of Science & Technology, 6(1), 65-80. https://doi.org/10.17509/ijost.v6i1.31516
48. Guo, L., Zhang, X., Xu, L., Li, Y., Pang, B., Sun, J., Wang, B., Huang, M., Xu, X., & Ho, H. (2021). Efficacy and Mechanism of Ultrasound Combined with Slightly Acidic Electrolyzed Water for Inactivating Escherichia coli. Journal of Food Quality, Article ID 6689751. doi: https://doi.org/10.1155/2021/6689751
49. Joyce, E., Phull, S.S., Lorimer, J.P., & Mason, T.J. (2003). The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics Sonochemistry, 10(6), 315-318. https://doi.org/10.1016/S1350-4177(03)00101-9
50. Li, J., Ahn, J., Liu, D., Chen, S., Ye, X., & Ding, T. (2016). Evaluation of ultrasound induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy. Applied and Environmental Microbiology, 82(6), 1828-1837. https://doi.org/10.1128/AEM.03080-15
51. Li, J., Suo, Y., Liao, X., Ahn, J., Liu, D., Chen, Sh., Ye, X., & Ding, T. (2017). Analysis of Staphylococcus aureus cell viability, sublethal injury and death induced by synergistic combination of ultrasound and mild heat. Ultrasonics Sonochemistry, 39, 101-110. https://doi.org/10.1016/j.ultsonch.2017.04.019
52. Liao, X., Li, J., Suo, Y., Chen, Sh., Ye, X., Liu, D., & Ding, T. (2018). Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus. Food Science and Human Wellness, 7(1), 102-109. https://doi.org/10.1016/j.fshw.2018.01.002
53. Starek, A., Kobus, Z., Sagan, A., Chudik, B., Pawłat, J., Kwiatkowski, M., Terebun, P., & Dariusz, A. (2021). Influence of ultrasound on selected microorganisms, chemical and structural changes in fresh tomato juice. Scientific Reports, 11. 3488. https://doi.org/10.1038/s41598-021-83073-8
54. Gao, S., Lewis, G.D., Ashokkumar, M.S., & Hemar, Y. (2014a). Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrasonics Sonochemistry, 21(1), 446-453. https://doi.org/10.1016/j.ultsonch.2013.06.006
55. Bastarrachea, L.J., Walsh, M., Wrenn, S.P., & Tikekar, R.V. (2017). Enhanced antimicrobial effect of ultrasound by the food colorant Erythrosin B. Food Research International, 100(1), 344-351. doi: https://doi.org/10.1016/j.foodres.2017.07.012
56. Inguglia, E.S., Tiwari, B.K., Kerry, J.P., & Burgess, C.M. (2018). Effects of high intensity ultrasound on the inactivation profiles of Escherichia coli K12 and Listeria innocua with salt and salt replacers. Ultrasonics Sonochemistry, 48, 492-498. https://doi.org/10.1016/j.ultsonch.2018.05.007
57. Hawrylik, E. (2019). Ultrasonic Disintegration of Bacteria Contained in Treated Wastewater. Journal of Ecological Engineering, 20, 171-176. https://doi.org/10.12911/22998993/112493
58. Tandiono, T., Siak-Wei Ow, D., Driessen, L., Sze-Hui Chin, C., Klaseboer, E., Boon-Hwa Choo, A., Ohl, S.-W., & Ohl C.-D. (2012). Sonolysis of Escherichia coli and Pichia pastoris in microfluidics. Lab on a Chip, 12, 780-786. https://doi.org/10.1039/C2LC20861J
59. Gao, S., Lewis, G.D., Ashokkumar, M., & Hemar, Y. (2014b). Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism. Ultrasonics Sonochemistry, 21(1), 454-460. https://doi.org/10.1016/j.ultsonch.2013.06.007
60. Ramteke, S.Р., Desale, R.J., Kankhare, D.H., & Fulpagare, Y.G. (2020). Thermosonication Technology in the Dairy Industry: A Review. International Journal of Advanced Research in Biological Sciences, 7(1), 82-89. https://ijarbs.com/pdfcopy/2020/jan2020/ijarbs10.pdf
61. Cabeza, M.C., Cárcel, J.A., Ordóñez, J.A., Cambero, I., De la Hoz, L., Garcia, M.L., Benedito, J. (2010). Relationships among selected variables affecting the resistance of Salmonella enterica, serovar Enteritidis to thermosonication. Journal of Food Engineering, 98(1), 71-75. https://doi.org/10.1016/j.jfoodeng.2009.12.009
62. Hunter, G., Lucas, M., Watson, I., & Parton, R. (2008). A radial mode ultrasonic horn for the inactivation of Escherichia coli K12. Ultrasonics Sonochemistry, 15(2), 101-109. https://doi.org/10.1016/j.ultsonch.2006.12.017
63. Lee, H., Zhou, B., Liang, W., Feng, H., & Martin, S.E. (2009). Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling. Journal of Food Engineering, 93(3), 354-364.: https://doi.org/10.1016/j.jfoodeng.2009.01.037
64. Nishiguchi, K., Hashimoto, Y., & Yamamoto, K. (2021). Inactivation of Bacteria and Fungus by Ultrasonic Cavitation. Japanese Journal of Multiphase Flow, 35(1), 11-18. https://doi.org/10.3811/jjmf.2021.T002
65. Joyce, E., Al-Hashimi, A., & Mason T.J. (2011). Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry. Journal of Applied Microbiology, 110(4), 862-870. https://doi.org/10.1111/j.1365-2672.2011.04923.x
66. Koda, S., Miyamoto, M., Toma, M., Matsuoka, T., & Maebayashi, M. (2009). Inactivation of Escherichia coli and Streptococcus mutans by ultrasound at 500 kHz. Ultrasonics Sonochemistry, 16(5), 655-659. https://doi.org/10.1016/j.ultsonch.2009.02.003
67. Capocelli, M., Prisciandaro, M., Lancia, A., & Musmarra, D. (2014). Comparison Between Hydrodynamic and Acoustic Cavitation in Microbial Cell Disruption. Chemical Engineering Transactions, 38, 13-18. https://doi.org/10.3303/CET1438003
68. Tikhomirova, N.A., Ashokkumar, M., Krasulya, O.N., Shestakov, S.D., & Bogush V.I. (2011). Sonochemical processing of dairy products. Milk Processing, 8(142), 40-43. https://www.elibrary.ru/download/elibrary_26006843_72624490.pdf (Data of Access: 25.04.2023). (In Russ.).
69. Kapustin, S.V., & Krasulia, O.N. (2016). Application of ultrasonic cavitation in the food industry. Interactive Science, 2, 101-103. (In Russ.).
70. Raso, J., Pagán, R., Cordón, S., & Sala, F.J. (1998). Influence of Temperature and Pressure on the Lethality of Ultrasound. Applied and Environmental Microbiology, 64(2), 465-471. https://doi.org/10.1128/AEM.64.2.465-471.1998
71. Eliseev, M.I., Fatykhov, J.A., & Lyudkevich, T. (2017). Determining the optimum cavitation mode for disinfection of cheese whey. Proceedings of the Kaliningrad State Technical University, 45, 160-169. https://cyberleninka.ru/article/n/opredelenie-optimalnogo-kavitatsionnogo-rezhima-dlya-obezzarazhivaniya-syrnoy-syvorotki/pdf. (In Russ,).
72. Cárcel, J.A., García-Pérez, J.V., Benedito, J., & Mulet A. (2012). Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 110(2), 200-207. https://doi.org/10.1016/j.jfoodeng.2011.05.038
73. Popova, N.V., & Fateeva, S.A. (2014). The study of the impact of ultrasonic impact on water quality indicators. Bulletin of South Ural State University: Series: Food and Biotechnology, 2(1), 30-33. https://cyberleninka.ru/article/n/izuchenie-vliyaniya-ultrazvukovogo-vozdeystviya-na-pokazateli-kachestva-vody (Date of Access: 04.15.2023). (In Russ.).
74. Shestakov, S.D., Krasulya, O.N., Artemova, YA., & Tikhomirova, N.A. (2011). Ultrasonic sonochemical water treatment. Dairy Industry, 5, 39-43. https://cyberleninka.ru/article/n/ultrazvukovaya-obrabotka-molochnyh-sistem-dlya-uluchsheniya-ih-svoystv (дата обращения: 12.06.2023). (In Russ.)
75. Butz, P., & Tauscher, B. (2002). Emerging technologies: chemical aspects. Food Research International, 35(2-3), 279-284. https://doi.org/10.1016/s0963-9969(01)00197-1
76. Gera, N., & Doores, S. (2011). Kinetics and mechanism of bacterial inactivation by ultrasound waves and sonoprotective effect of milk components. Journal of Food Science, 76(2), M111-M119. https://doi.org/10.1111/j.1750-3841.2010.02007.x
77. Ivanova, M.A., Demchenko, V.A., Tambulatova, E.V., & Kravchenko, N.N. (2019). Optimization of apple juice dosage in the recipe of bakery products. New Technologies, 1, 69-77. https://doi.org/10.24411/2072-0920-2019-10107 (In Russ.).
78. Bermúdez-Aguirre, D., Mawson, R., Versteeg, K., & Barbosa-Canovas, G.V. (2009a). Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermo-sonication treatments. Journal of Food Quality, 32(3), 283-302. https://doi.org/10.1111/j.1745-4557.2009.00250.x
79. Bermúdez-Aguirre, D., Corradini, M.G., Mawson, R., & Barbosa-Cánovas, G.V. (2009b). Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innovative Food Science and Emerging Technologies, 10(2), 172-178. https://doi.org/10.1016/j.ifset.2008.11.005
80. Bermúdez-Aguirre, D., & Barbosa-Cánovas, G.V. (2012). Inactivation of Saccharomyces cerevisiae in pineapple, grape and cranberry juices under pulsed and continuous thermo-sonication treatments. Journal of Food Engineering, 108(3), 383-392. https://doi.org/10.1016/j.jfoodeng.2011.06.038
81. Czank, C., Simmer K., & Hartmann P.E. (2010). Simultaneous pasteurization and homogenization of human milk by combining heat and ultrasound: effect on milk quality. Journal of Dairy Research,. 77(2), 183-189. https://doi.org/10.1017/S0022029909990483
82. Abesinghe, A.M., Islam, N.L, Vidanarachchi, N., Prakash, J.K., Silva, S., & Karim M.A. (2019). Effects of ultrasound on the fermentation profile of fermented milk products incorporated with lactic acid bacteria. International Dairy Journal, 90, 1-14. https://doi.org/10.1016/j.idairyj.2018.10.006
83. Shen, Y., Zhu, D., Xi, P., Cai, T., Cao, X., Liu, H., & Li, J. (2021). Effects of temperature-controlled ultrasound treatment on sensory properties, physical characteristics and antioxidant activity of cloudy apple juice. LWT, 142, 111030. https://doi.org/10.1016/j.lwt.2021.111030
84. Kiang, W.S., Bhat, R., Rosma, A., & Cheng, L.H. (2013). Effects of thermosonication on the fate of Escherichia coli O157: H7 and Salmonella enteritidis in mango juice. Letters in Applied Microbiology, 56(4), 251-257. https://doi.org/10.1111/lam.12042
85. Valero, M., Recrosio, N., Saura, D., Munoz, N., Martıc, N., & Lizama, V. (2007). Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering, 80(2), 509-516. https://doi.org/10.1016/j.jfoodeng.2006.06.009
86. Muñoz, A., Palgan, I., & Noci, F. (2011). Combinations of high intensity light pulses and thermosonication for the inactivation of Escherichia coli in orange juice. Food Microbiology, 28(6), 1200-1204. https://doi.org/10.1016/j.fm.2011.04.005
87. Adekunte, A., Tiwari, B.K., Scannell, A., Cullen, P.J., & O’Donnell, C. (2010). Modelling of yeast inactivation in sonicated tomato juice. International Journal of Food Microbiology, 137(1), 116-120. https://doi.org/10.1016/j.ijfoodmicro.2009.10.006
88. Milani, E.A., & Silva F.V.M. (2017). Ultrasound assisted thermal pasteurization of beers with different alcohol levels: inactivation of Saccharomyces cerevisiae ascospores. Journal of Food Engineering, 198, 45-53. https://doi.org/10. 1016/j.jfoodeng.2016.11.015
89. Evelyn, E., & Silva, F.V.M. (2015). Use of power ultrasound to enhance the thermal inactivation of Clostridium perfringens spores in beef slurry. International Journal of Food Microbiology, 206, 17-23. https://doi.org/10.1016/j.ijfoodmicro.2015.04.013
90. Cameron, M. (2007). Impact of low-frequency high-power ultrasound on spoilage and potentially pathogenic dairy microbes. Dissertation for the degree of Ph.D. in Food Science. Stellenbosch: University of Stellenbosch, 217p. https://core.ac.uk/download/pdf/37319109.pdf
91. Ugarte-Romero, E., Feng, H., & Martin, S.E. (2007). Inactivation of Shigella boydii 18 IDPH and Listeria monocytogenes Scott A with power ultrasound at different acoustic energy densities and temperatures. Journal of Food Science, 72(4), 103-107. https://doi.org/10.1111/j.1750-3841.2007.00340.x
92. Álvarez, I., Mañas, P., Sala, F.J., & Condón S. (2003). Inactivation of Salmonella enterica Serovar Enteritidis by Ultrasonic Waves under Pressure at Different Water Activities. Applied and Environmental Microbiology, 69(1), 668-672. http://dx.doi.org/10.1128/AEM.69.1.668-672.2003
93. Raso, J., & Barbosa-Canovas G.V. (2003). Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, 43(3), 265-285. https://doi.org/10.1080/10408690390826527
94. Chemat, F., Zill, E.H., & Khan, M.K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813-835. https://doi.org/10.1016/j.ultsonch.2010.11.023
95. Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial Biofilms in the Food Industry – A Comprehensive Review. International Journal of Environmental Research and Public Health, 18(4), 2014. https://doi.org/10.3390/ijerph18042014
96. Sun, J., Wang, D., Sun, Zh., Liu, F., Du, L., & Wang, D. (2021). The combination of ultrasound and chlorogenic acid to inactivate Staphylococcus aureus under planktonic, biofilm, and food systems. Ultrasonics Sonochemistry, 80, 105801. https://doi.org/10.1016/j.ultsonch.2021.105801
97. Zhu, T., Yang, Ch., Bao, X., Chen, F., & Guo X. (2022). Strategies for controlling biofilm formation in food industry. Grain & Oil Science and Technology, 5(4), 179-186. https://doi.org/10.1016/j.gaost.2022.06.003
98. Costerton, J.W., Cheng, K.J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M., & Marrie, T.J. (1987). Bacterial Biofilms in Nature and Disease. Annual Review of Microbiology, 41, 435-464. https://doi.org/10.1146/annurev.mi.41.100187.002251
99. Lebeaux, D., Ghigo, J.-M. (2012). Infections associées aux biofilms – Quelles perspectives thérapeutiques issues de la recherche fondamentale. Medecine sciences (Paris), 28(8-9), 727-739. https://doi.org/10.1051/medsci/2012288015 (In French)
100. Galié, S., García-Gutiérrez, C., Miguélez, E.M., Villar, C.J., & Lombó, F. (2018). Biofilms in the Food Industry: Health Aspects and Control Methods. Frontiers in Microbiology, 9, 898. https://doi.org/10.3389/fmicb.2018.00898.
101. Yu, H., Liu, Y., Li, L., Guo, Y., Xie, Y., Cheng, Y., & Yao, W. (2020). Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms. Trends in Food Science & Technology, 96, 91-101. https://doi.org/10.1016/J.TIFS.2019.12.010
102. Ilyina, T.S., & Romanova, Yu.M. (2021). Bacterial biofilms: their role in chronical infection processes and the means to combat them. Molecular Genetics, Microbiology and Virology. 39(2), 14‑24. https://doi.org/10.17116/molgen20213902114 (In Russ.).
103. Vyas, N., Manmi, K., Wang, Q., Jadhav, A.J., Barigou, M., Sammons, R.L., Kuehne, S.A., & Walmsley A.D. (2019). Which Parameters Affect Biofilm Removal with Acoustic Cavitation. A Review. Ultrasound in Medicine & Biology, 45(5), 1044-1055. https://doi.org/10.1016/j.ultrasmedbio.2019.01.002
104. Erriu, M., Blus, C., Szmukler-Moncler, S., Buogo, S., Levi, R., Barbato, G., Madonnaripa, D., Denotti, G., Piras, V., & Orrù, G. (2014). Microbial biofilm modulation by ultrasound: Current concepts and controversies. Ultrasonics Sonochemistry, 21(1), 15-22. https://doi.org/10.1016/j.ultsonch.2013.05.011
105. Kirzhner, F., Zimmels, Y., Malkovskaja, A., & Starosvetsky, J. (2009). Removal of microbial biofilm on Water Hyacinth plants roots by ultrasonic treatment. Ultrasonics, 49(2), 153-158. https://doi.org/10.1016/j.ultras.2008.09.004
106. Kvich, L., Christensen, M.H., Pierchala, M.K., Astafiev, K., Lou-Moeller, R., & Bjarnsholt, T. (2022). The Combination of Low-Frequency Ultrasound and Antibiotics Improves the Killing of In Vitro Staphylococcus aureus and Pseudomonas aeruginosa Biofilms. Antibiotics, 11, 1494. https://doi.org/10.3390/antibiotics11111494
107. Babushkina, I.V., Mamonova, I.A., Ulyanov, V.Y., & Shpinyak, S.P. (2022). Combined Effect of Ceftriaxon and Low-Frequency Ultrasound on the Viability of Staphylococcus epidermidis Cells in a Preformed Biofilm. Bulletin of Experimental Biology and Medicine, 174, 47-50. https://doi.org/10.1007/s10517-022-05646-5
108. Bigelow, T.A., Northagen, T., Hill, T.M., & Sailer, F.C. (2008). Ultrasound histotripsy and the destruction of Escherichia coli biofilms. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver: IEEE, 4467-4470. https://doi.org/10.1109/IEMBS.2008.4650203.
109. Bigelow, T.A., Northagen, T., Hill, T.M., & Sailer F.C. (2009). The Destruction of Escherichia Coli Biofilms Using High-Intensity Focused Ultrasound. Ultrasound in Medicine and Biology, 35(6), 1026-1031. https://doi.org/10.1016/j.ultrasmedbio.2008.12.001
110. Bigelow, T.A., Thomas, C.L., Wu, H., & Itani K.M.F. (2017). Histotripsy Treatment of S. aureus Biofilms on Surgical Mesh Samples Under Varying Pulse Durations. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,. 64(10), 1420-1428. https://doi.org/10.1109/TUFFC.2017.2718841
111. Wang, T., Ma, W., Jiang, Z., & Bi L. (2020). The penetration effect of HMME-mediated low-frequency and low-intensity ultrasound against the Staphylococcus aureus bacterial biofilm. European Journal of Medical Research, 25, 51. https://doi.org/10.1186/s40001-020-00452-z
Supplementary files
|
1. Рисунок 1 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(166KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(429KB)
|
Indexing metadata ▾ |
|
3. Рисунок 3 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(2MB)
|
Indexing metadata ▾ |
|
4. Рисунок 4 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
![]() |
5. Рисунок 5 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(14KB)
|
Indexing metadata ▾ |
![]() |
6. Рисунок 6 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(12KB)
|
Indexing metadata ▾ |
|
7. Рисунок 7а | |
Subject | ||
Type | Исследовательские инструменты | |
View
(7MB)
|
Indexing metadata ▾ |
|
8. Рисунок 7б | |
Subject | ||
Type | Исследовательские инструменты | |
View
(6MB)
|
Indexing metadata ▾ |
|
9. Рисунок 7в | |
Subject | ||
Type | Исследовательские инструменты | |
View
(7MB)
|
Indexing metadata ▾ |
![]() |
10. Рисунок 8 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(11KB)
|
Indexing metadata ▾ |
![]() |
11. Рисунок 9 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(11KB)
|
Indexing metadata ▾ |
|
12. Рисунок 10 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(9MB)
|
Indexing metadata ▾ |
|
13. Рисунок 11 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(670KB)
|
Indexing metadata ▾ |
Review
For citations:
Kondratenko K.Yu., Kondratenko V.V., Kurbanova M.N., Patsyuk L.K. Ultrasonic Cavitation and Its Potential Impact on Microflora: A Systematic Scoping Review. Storage and Processing of Farm Products. 2023;(4):75-97. (In Russ.) https://doi.org/10.36107/spfp.2023.4.463